Adhesively bonded metals are increasingly used in many industries. Inspecting these parts remains challenging for modern non-destructive testing techniques. Laser ultrasound (LU) has shown great potential in high-resolution imaging of carbon-reinforced composites. For metals, excitation of longitudinal waves is inefficient without surface ablation. However, shear waves can be efficiently generated in the thermo-elastic regime and used to image defects in metallic structures. Here we present a compact LU system consisting of a high repetition rate diode-pumped laser to excite shear waves and noncontact detection with a highly sensitive fiber optic Sagnac interferometer to inspect adhesively bonded aluminum plates. Multiphysics finite difference simulations are performed to optimize the measurement configuration. Damage detection is performed for a structure consisting of three aluminum plates bonded with an epoxy film. Defects are simulated by a thin Teflon film. It is shown that the proposed technique can efficiently localize defects in both adhesion layers.
The paper presents experimental works related to contact nonlinearities. The research is focused on effects derived from hysteresis stiffness characteristics and vibro-impacts generated during the relative movement of two surfaces. The modeling of the contact nonlinearities was divided in two parts. First, the parameters of the system were identified based on modal analysis test. Next, the model was created and verified with experimental data. The experimental works were performed on steel samples with prepared contact surfaces. Electromagnetic shaker was used to produce relative motion between surfaces in contact. The response of the system was acquired by noncontact laser vibrometer. Both displacement and velocity of vibration were measured. Additionally, the impedance head measures the force and acceleration. The experimental data were used to validate the created models.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations鈥揷itations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.