The aim of the contribution is to analyze possibilities of high-resolution movement classification using human EEG. For this purpose, a database of the EEG recorded during right-thumb and little-finger fast flexion movements of the experimental subjects was created. The statistical analysis of the EEG was done on the subject's basis instead of the commonly used grand averaging. Statistically significant differences between the EEG accompanying movements of both fingers were found, extending the results of other so far published works. The classifier based on hidden Markov models was able to distinguish between movement and resting states (classification score of 94–100%), but it was unable to recognize the type of the movement. This is caused by the large fraction of other (nonmovement related) EEG activities in the recorded signals. A classification method based on advanced EEG signal denoising is being currently developed to overcome this problem.
-The article describes the classification of simple movements using a system based on Hidden Markov Models (HMM). Brisk extensions and flexions of the index finger, and movements of the proximal arm (shoulder) and distal arm (finger) were classified using scalp EEG signals. The aim of our study was to develop a system for the classification of movements which show EEG changes at identical scalp electrodes of one hemisphere. The classification of EEG patterns related to movements of one hand is difficult because the disentanglement of movements can only rely on the temporal evolution of EEG changes at one recording site. A large variability of EEG waveforms requires the use of the context information.The classification procedure was optimized in all parts to increase the recognition score and it was extensively tested on a set of EEG data. The average classification score was 80%, std. deviation 9% for the classification of distal and proximal movements.The classification of extension/flexion reached even better results (due to more accurate localization of the signal source on the scalp). The classification of movement-related EEG data based on HMM yielded higher recognition scores than previously reported classification scores based on artificial neural networks (NaN).
In this contribution we examine the use and utility of parallel HMM classification in single-trial movement-EEG classification of index finger reaching and grasping movement. Parallel HMMs allow us to easily utilize the information contained in multiple channels. Using HMM classifier output in parallel from examined EEG channels we have been able to achieve as good a classification score as with single electrode results, further we do not rely on a single electrode giving persistently good results. Our parallel approach has the added benefit of not having to rely on small inter-session variability as it gives very good results with fewer classifier parameters being optimized. Without any classification optimization we can get a score improvement of 11.2% against randomly selected physiologically relevant electrode. If we use subject specific information we can further improve on the reference score by 1%, achieving a classification score of 84.2±0.7%.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.