The objective of this study was to explore the possible improvement of plant growth using the activity of the bacterial enzyme ACC (1-aminocyclopropane-1-carboxylate) deaminase (endophytes and rhizobacteria). The beneficial effect of ACC deaminase activity was tested on the plants growing under stress conditions (high concentrations of heavy metals: cadmium, lead, zinc in the soil). The bacteria were isolated from three plants species: Festuca rubra L., Agrostis capillaris L., Arabidopsis thaliana L. Heynh, acquired from the area contaminated with heavy metals. The strains with the highest ACC deaminase activity were used to prepare a bacterial consortium and inoculate the plants. It has been shown that inoculation of plants with ACC producing bacteria has a positive effect on their growth under stress conditions. The bacterial entophytes strains showed a higher activity of ACC deaminase, which resulted in a higher biomass growth of inoculated plants. The PGPB bacteria may limit the toxicity of harmful ions and thus the increase the adaptive properties of plants. Moreover, it was discovered that the bacteria mainly belonging to genus Bacillus and Pseudomonas had the highest ACC deaminase activity in the environment contaminated with multiple heavy metals. The use of selected microorganisms and plants will provide results in an increasing efficiency of phytoremediation.
Organiczne dodatki we wspomaganej fitoremediacji gleb zanieczyszczonych metalami ciężkimi -podstawowe markery fitotoksyczności Abiotic and biotic stressors induce a strong cellular response in plants, resulting in significant changes in plant cells metabolism. Knowledge in this area can help to develop very specific methods of stress decrease. For this purpose, it is necessary to find sensitive and accurate tools that will allow to estimate the level of stress in cells. The largest group of substances involved in stress response are proteins. The study of changes in the protein profile can yield the most answers concerning the different mechanisms of soil microflora tolerance and the adaptation of plants to unfavorable conditions. The knowledge of these mechanisms can significantly support the assisted phytoremediation of soils. The aim of the study was to investigate the effect of abiotic factors on plant stress response in Lupinus luteus grown on soil contaminated with heavy metals and amended with organic additives. The aim of the study was to determine the level of plant stress based on tests of plant stress proteins presence and a specific peroxidase activity in plants grown on soil contaminated with heavy metals (HMs). An acrylamide gel electrophoresis (SDS-PAGE) has been used in the study to separate specific proteins fractions (metallothioneins), accompanying stress factors. The results of peroxidase activity indicated that the organic soil amendments have an impact on reducing plant stress. The lowest dose of soil amendments reduced the amount of peroxidase by almost half in roots. This proves that adequate soil supplementation helps plants to tolerate stress. The SDS-PAGE analysis suggests that in the most stressful conditions the protein profile is significantly different from control and indicates additional small protein products in the range of 7÷20 kDa indicating, in accordance with the literature, presence of metallothioneins as response to plant stress. The applied methodology confirms that organic soil amendments reduced the level of HMs plants stress after organic amendments soil application.
Sewage sludge (SS) is a byproduct of wastewater treatment which is commonly used as fertilizer in the world. However, due to the possible contamination with heavy metals, xenobiotics and fecal pathogens, its application on fields is not so common in Poland. A safer alternative for agricultural use is the SS produced by food industry in small "inhouse" wastewater treatment plants, as substances that are used in its production are usually less harmful. As pretreatment of industrial wastewater is required before dumping the wastewater into common stream, the SS is an abundant byproduct that needs to be managed in an environmentally friendly and cost effective manner. Because the water content in SS is usually high, the dosage and logistics are problematic and thus we propose converting the sewage sludge into solid granular fertilizer in the vermicomposting process. Not only are the weight and volume of product decreased as a result, but also the nutrients such as N, P, and K become concentrated and made more accessible for plants. The SS is also further stabilized and less prone to produce odors and becoming putrid. The aim of this study was the in-depth analysis of the SS process vermicomposting with biochar. The SS was acquired from a local soft drink factory wastewater treatment plant. The batches of SS were inoculated with 20% mature vermicompost and E. fetida worms. Instead of typical bulking agents (like woodchips or straw) powdered biochar was used in the concentrations of 5, 10 and 15% as it exhibits beneficial influence on the process and increase the value of the final product.
Background. The foot is one of the most important anatomical structures of the human body. It is mainly responsible for maintaining an appropriate position, both in static and dynamic conditions. This function is conditioned by many factors, the most important being a normal shape of the foot arch, which determines its proper operation. Any deviation from the norm may result in disruption in the performance of the foot and affect the functioning of even distant segments of the human body. The aim of this study was to evaluate the correlation between the foot arches and the efficiency of the balance mechanism in standing. Material and methods. The study enrolled 48 individuals, of whom 21 were women and 27 men. Evaluation of the foot arches was performed using Clarke's angle index, which was determined with the use of a mirror podoscope produced by Podoskop.pl and a specialist computer program FREEstep. The efficiency of the balance mechanism in the standing position was evaluated on the basis of six stabilographic tests. Results. A statistical analysis showed a significant relationship between the mean value of Clarke's angle index in bipedal standing and the result of the stabilographic test for bipedal standing with eyes closed, and between the value of Clarke's angle index for the left foot in bipedal standing and the result of stabilographic tests for bipedal standing both with the eyes open and closed. Conclusion. 1. There is a correlation between the value of Clarke's angle index of the foot in bipedal standing and the length of the foot pressure path on the ground during bipedal standing. 2. Individuals with a reduced plantar vault of the foot have reduced efficiency of the balance mechanism in bipedal standing both with the eyes open and closed. The above observations can be generalised as follows: individuals with more arched feet have better balance control in bipedal standing. 3. Persons with more arched feet have better balance control in bipedal standing.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.