Artificial neural networks method (ANNs) is a common estimation tool used for geophysical applications. Considering borehole data, when the need arises to supplement a missing well log interval or whole logging—ANNs provide a reliable solution. Supervised training of the network on a reliable set of borehole data values with further application of this network on unknown wells allows creation of synthetic values of missing geophysical parameters, e.g., resistivity. The main assumptions for boreholes are: representation of similar geological conditions and the use of similar techniques of well data collection. In the analyzed case, a set of Multilayer Perceptrons were trained on five separate chronostratigraphic intervals of borehole, considered as training data. The task was to predict missing deep laterolog (LLD) logging in a borehole representing the same sequence of layers within the Lublin Basin area. Correlation between well logs data exceeded 0.8. Subsequently, magnetotelluric parametric soundings were modeled and inverted on both boreholes. Analysis showed that congenial Occam 1D models had better fitting of TM mode of MT data in each case. Ipso facto, synthetic LLD log could be considered as a basis for geophysical and geological interpretation. ANNs provided solution for supplementing datasets based on this analytical approach.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.