Abstract. The observation of neutrinoless double-beta decay (0νββ) would show that lepton number is violated, reveal that neutrinos are Majorana particles, and provide information on neutrino mass. A discovery-capable experiment covering the inverted ordering region, with effective Majorana neutrino masses of 15 − 50 meV, will require a tonne-scale experiment with excellent energy resolution and extremely low backgrounds, at the level of ∼0.1 count /(FWHM·t·yr) in the region of the signal. The current generation 76 Ge experiments GERDA and the Majorana Demonstrator, utilizing high purity Germanium detectors with an intrinsic energy resolution of 0.12%, have achieved the lowest backgrounds by over an order of magnitude in the 0νββ signal region of all 0νββ experiments. Building on this success, the LEGEND collaboration has been formed to pursue a tonne-scale 76 Ge experiment. The collaboration aims to develop a phased 0νββ experimental program with discovery potential at a half-life approaching or at 10 28 years, using existing resources as appropriate to expedite physics results.
Cryogenic Rare Event Search with Superconducting Thermometers (CRESST) is a long-standing direct dark matter detection experiment with cryogenic detectors located at the underground facility Laboratori Nazionali del Gran Sasso in Italy. CRESST-III, the third generation of CRESST, was specifically designed to have a world-leading sensitivity for low-mass dark matter (DM) (less than 2 GeV/c 2) to probe the spin-independent DM-nucleus cross section. At present, a large part of the parameter space for spin-independent scattering off nuclei remains untested for dark matter particles with masses below few GeV/c 2 although many motivated theoretical models having been proposed. The CRESST-III experiment employs scintillating CaWO 4 crystals of ∼ 25 g as target material for dark matter interactions operated as cryogenic scintillating calorimeters at ∼ 10 mK. CRESST-III first data taking was successfully completed in 2018, achieving an unprecedented energy threshold for nuclear recoils. This result extended the present sensitivity to DM particles as light as ∼ 160 MeV/c 2. In this paper, an overview of the CRESST-III detectors and results will be presented.
The CRESST (Cryogenic Rare Event Search with Superconducting Thermometers) dark matter search experiment aims for the detection of dark matter particles via elastic scattering off nuclei in crystals. To understand the CRESST electromagnetic background due to the bulk contamination in the employed materials, a model based on Monte Carlo simulations was developed using the Geant4 simulation toolkit. The results of the simulation are applied to the TUM40 detector module of CRESST-II phase 2. We are able to explain up to of the electromagnetic background in the energy range between 1 and .
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.