Mucopolysaccharidosis IIIA is a neuronopathic lysosomal storage disease, characterised by heparan sulphate and other substrates accumulating in the brain. Patients develop behavioural disturbances and cognitive decline, a possible consequence of neuroinflammation and abnormal substrate accumulation. Interleukin (IL)‐1β and interleukin‐1 receptor antagonist (IL‐1Ra) expression were significantly increased in both murine models and human MPSIII patients. We identified pathogenic mechanisms of inflammasome activation, including that disease‐specific 2‐O‐sulphated heparan sulphate was essential for priming an IL‐1β response via the Toll‐like receptor 4 complex. However, mucopolysaccharidosis IIIA primary and secondary storage substrates, such as amyloid beta, were both required to activate the NLRP3 inflammasome and initiate IL‐1β secretion. IL‐1 blockade in mucopolysaccharidosis IIIA mice using IL‐1 receptor type 1 knockout or haematopoietic stem cell gene therapy over‐expressing IL‐1Ra reduced gliosis and completely prevented behavioural phenotypes. In conclusion, we demonstrate that IL‐1 drives neuroinflammation, behavioural abnormality and cognitive decline in mucopolysaccharidosis IIIA, highlighting haematopoietic stem cell gene therapy treatment with IL‐1Ra as a potential neuronopathic lysosomal disease treatment.
HighlightsUranyl acetate/tungsten double stains are proposed for imaging lipid rich nanoparticle in TEM.Combined with methylcellulose embedment, the technique enhances membrane contrast.The technique works for liposomes, nanodiscs and bicelles.The double staining should improve quantification of lipid rich nanoparticles.
Nanoparticles are of increasing importance in biomedicine but quantification is problematic because current methods depend on indirect measurements at low resolution. Here we describe a new high-resolution method for measuring and quantifying nanoparticles in suspension. It involves premixing nanoparticles in a hydrophilic support medium (methylcellulose) before introducing heavy metal stains for visualization in small air-dried droplets by transmission electron microscopy (TEM). The use of methylcellulose avoids artifacts of conventional negative stain-TEM by (1) restricting interactions between the nanoparticles, (2) inhibiting binding to the specimen support films and (3) reducing compression after drying. Methylcellulose embedment provides effective electron imaging of liposomes, nanodiscs and viruses as well as comprehensive visualization of nanoparticle populations in droplets of known size. These qualities facilitate unbiased sampling, rapid size measurement and estimation of nanoparticle numbers by means of ratio counting using a colloidal gold calibrant. Specimen preparation and quantification take minutes and require a few microliters of sample using only basic laboratory equipment and a standard TEM.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.