In this research a proposed technique is used to enhance the frame difference technique performance for extracting moving objects in video file. One of the most effective factors in performance dropping is noise existence, which may cause incorrect moving objects identification. Therefore it was necessary to find a way to diminish this noise effect. Traditional Average and Median spatial filters can be used to handle such situations. But here in this work the focus is on utilizing spectral domain through using Fourier and Wavelet transformations in order to decrease this noise effect. Experiments and statistical features (Entropy, Standard deviation) proved that these transformations can stand to overcome such problems in an elegant way.
Moving <span>objects detection is a vital field of study in various applications. Many of such applications may have to capture and process a lot of data, then such these data need to be reduced as much as possible in order to have a reasonable and suitable system for achieving the desired aims efficiently. The proposed algorithm utilizes singular value decomposition (SVD) and Bayer pattern filter for their good properties in producing very representative reduced data. This data is then handled by frame difference objects detection, which in turn is an approach that doesn’t need to handle much data. The camera shaking which can be caused by a windy weather in the case of the outdoor static camera may introduce a frame difference with imprecise moving objects detection, hence frames compensation is conducted utilizing a transformation based on speed up robust feature transform (SURF) detected key points.</span>
Various document types play an influential role in a lot of our lives activities today; hence preserving their integrity is an important matter. Such documents have various forms, including texts, videos, sounds, and images. The latter types' authentication will be our concern here in this paper. Images can be handled spatially by doing the proper modification directly on their pixel values or spectrally through conducting some adjustments to some of the addressed coefficients. Due to spectral (frequency) domain flexibility in handling data, the domain coefficients are utilized for the watermark embedding purpose. The integer wavelet transform (IWT), which is a wavelet transform based on the lifting scheme, is adopted in this paper in order to provide a direct way for converting image pixels' integer values to integer coefficient values rather than floating point coefficients that could be produced by the traditional wavelet transform. This direct relation can enhance the processed image quality due to avoiding the rounding operations on the floating point coefficients. The well-known parity bit approach is also utilized in this paper as an authentication mechanism, where 3 secret parity bits are used for each block in an image which is divided into non-overlapped blocks in order to enforce a form of fragile watermark approach. Thus, any alteration in the block pixels could cause the adopted (even) parity to be violated. The fragile watermarking is achieved through the modification of least significant bits ((LSBs) of certain frequency coefficients' according to the even parity condition. In spite of this image watermarking operation, the proposed method is efficient. In order to prove the efficiency of our proposed method, it was tested against standard images using measurements like peak signal to noise ratio (PSNR) and structural similarity index (SSIM). Experiments showed promising results; the method preserves high image quality (PSNR≈ 44.4367dB, SSIM≈ 0.9956) and good tamper detection capability.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.