Online Social Networks (OSNs) generate a huge volume of user-originated texts. Gender classification can serve multiple purposes. For example, commercial organizations can use gender classification for advertising. Law enforcement may use gender classification as part of legal investigations. Others may use gender information for social reasons. Here we explore language independent gender classification. Our approach predicts gender using five color-based features extracted from Twitter profiles (e.g., the background color in a user's profile page). Most other methods for gender prediction are typically language dependent. Those methods use high-dimensional spaces consisting of unique words extracted from such text fields as postings, user names, and profile descriptions. Our approach is independent of the user's language, efficient, and scalable, while attaining a good level of accuracy. We prove the validity of our approach by examining different classifiers over a large dataset of Twitter profiles.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.