Background : Ocular drug delivery is an extremely challenging area due to its restrictive barrier functionalities. Objective : Drug transport via corneal/non-corneal routes involves several intricate biological processes such as drug penetration across the ocular barriers and transfer to the anterior or posterior chambers, thus the influence of these processes on the pharmacotherapy of the eye should be fully addressed. Methods : To pursue the impacts of such impediments in novel drug therapy, recent publications were reviewed regarding advanced strategies such as nanomedicines. Conclusion : The ocular barriers are highly specialized and selectively control the inward/outward traverse of compounds, hence a better understanding of these biological obstacles would provide a platform to advance ophthalmic drug therapy towards specified delivery/targeting with minimal adverse consequences.
Introduction: Desired clinical outcome of pharmacotherapy of brain diseases largely depends upon the safe drug delivery into the brain parenchyma. However, due to the robust blockade function of the blood-brain barrier (BBB), drug transport into the brain is selectively controlled by the BBB formed by brain capillary endothelial cells and supported by astrocytes and pericytes.
Methods: In the current study, we have reviewed the most recent literature on the subject to provide an insight upon the role and impacts of BBB on brain drug delivery and targeting.
Results: All drugs, either small molecules or macromolecules, designated to treat brain diseases must adequately cross the BBB to provide their therapeutic properties on biological targets within the central nervous system (CNS). However, most of these pharmaceuticals do not sufficiently penetrate into CNS, failing to meet the intended therapeutic outcomes. Most lipophilic drugs capable of penetrating BBB are prone to the efflux functionality of BBB. In contrast, all hydrophilic drugs are facing severe infiltration blockage imposed by the tight cellular junctions of the BBB. Hence, a number of strategies have been devised to improve the efficiency of brain drug delivery and targeted therapy of CNS disorders using multimodal nanosystems (NSs).
Conclusions: In order to improve the therapeutic outcomes of CNS drug transfer and targeted delivery, the discriminatory permeability of BBB needs to be taken under control. The carrier-mediated transport machineries of brain capillary endothelial cells (BCECs) can be exploited for the discovery, development and delivery of small molecules into the brain. Further, the receptor-mediated transport systems can be recruited for the delivery of macromolecular biologics and multimodal NSs into the brain.
Iron-oxide nanoparticles (IONs) with biocompatible coatings are the only nanostructural materials which have been approved by the FDA for clinical use. Common biocompatible coatings such as hydrocarbons, polymers, and silica have profound influences on critical characteristics of IONs. Recently, amino acids were introduced as a novel biocompatible coating. In the present study, the effects of amino acids on IONs synthesis and characteristics have been evaluated. Magnetite nanoparticles with L-arginine and L-lysine coatings were synthesised by a coprecipitation reaction in aqueous solvent and their characteristics were compared with naked magnetite nanoparticles. The results showed that amino acids can be a perfect coating for IONs and would increase particle stability without any significant effects on the critical properties of nanoparticles such as particle size and magnetization saturation value.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.