Conservation paleobiology has coalesced over the last two decades since its formal coining, united by the goal of applying geohistorical records to inform the conservation, management, and restoration of biodiversity and ecosystem services. Yet, the field is still attempting to form an identity distinct from its academic roots. Here, we ask a deceptively simple question: What is conservation paleobiology? To track its development as a field, we synthesize complementary perspectives from a survey of the scientific community that is familiar with conservation paleobiology and a systematic literature review of publications that use the term. We present an overview of conservation paleobiology’s research scope and compare survey participants’ perceptions of what it is and what it should be as a field. We find that conservation paleobiologists use a variety of geohistorical data in their work, although research is typified by near-time records of marine molluscs and terrestrial mammals collected over local to regional spatial scales. Our results also confirm the field’s broad disciplinary basis: survey participants indicated that conservation paleobiology can incorporate information from a wide range of disciplines spanning conservation biology, ecology, historical ecology, paleontology, and archaeology. Finally, we show that conservation paleobiologists have yet to reach a consensus on how applied the field should be in practice. The survey revealed that many participants thought the field should be more applied but that most do not currently engage with conservation practice. Reflecting on how conservation paleobiology has developed over the last two decades, we discuss opportunities to promote community cohesion, strengthen collaborations within conservation science, and align training priorities with the field’s identity as it continues to crystallize.
The fossil record can illuminate factors that contribute to extinction risk during times of global environmental disturbance; for example, inferred thermal tolerance was an important predictor of extinction during several mass extinctions that corresponded with climate change. Additionally, members of geographically isolated biotas may face higher risk because they have less opportunity to migrate to suitable climate refugia during environmental disturbances. Here, we investigate how different types of risk intersect in the well-preserved brachiopod fauna of the Appalachian Foreland Basin during the two pulses of the Frasnian–Famennian mass extinction (Late Devonian, ~ 372 Ma). The selectivity of extinction is consistent with climate change (cooling) as a primary kill mechanism in this fauna. Overall, the extinction was mild relative to other regions, despite the many endemic species. However, vulnerable taxa went extinct more rapidly, during the first extinction pulse, such that the second pulse was insignificant. These results suggest that vulnerable taxa in geographically isolated biotas face heightened extinction risk at the initiation of environmental stress, but that taxa in other regions may eventually see elevated extinction risk if environmental stress repeats or intensifies.
Conservation paleobiology aims to provide a longer-term perspective on environmental problems to inform decisions about natural resource conservation. As such, conservation paleobiology research falls short when geohistorical data and insights do not inform conservation practice, contributing to the well-known idea that a “gap” exists between the production and use of science in the environmental realm. Our study quantified the extent of this research-implementation (or knowing-doing) gap through a systematic literature review and survey questionnaire. We determined whether empirical studies in conservation paleobiology with a link to conservation, management, or restoration documented the use of geohistorical data to implement some form of action or if there was a specific mention of how the geohistorical data could be used in theory. Results indicate that “applied” conservation paleobiology has a poor record of translating research into action. Tangible conservation impacts were evident in only 10.8% of studies. Over half of these studies included coauthors affiliated with a conservation organization. Among the studies coded as having a theoretical application, 25.2% specified how the geohistorical data could be implemented to enhance conservation, management, or restoration actions. All studies documenting action used geohistorical data from the geologically recent past where the species and habitats are familiar to those found today. Drawing insights from the bright spots we identified, we offer some practical suggestions to narrow the gap between knowing and doing in conservation paleobiology.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.