What determines the stability of networks inferred from dynamical behavior of a system? Internal and external shocks in a system can destabilize the topological properties of comovement networks. In real-world data, this creates a trade-off between identification of turbulent periods and the problem of high dimensionality. Longer time-series reduces the problem of high dimensionality, but suffers from mixing turbulent and non-turbulent periods. Shorter time-series can identify periods of turbulence more accurately, but introduces the problem of high dimensionality, so that the underlying linkages cannot be estimated precisely. In this paper, we exploit high-frequency multivariate financial data to analyze the origin of instability in the inferred networks during periods free from external disturbances. We show that the topological properties captured via centrality ordering is highly unstable even during such non-turbulent periods. Simulation results with multivariate Gaussian and fat-tailed stochastic process calibrated to financial data show that both sampling frequencies and the presence of outliers cause instability in the inferred network. We conclude that instability of network properties do not necessarily indicate systemic instability. Graphical abstract
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.