The ProtoDUNE-SP detector is a single-phase liquid argon time projection chamber with an active volume of 7.2× 6.1× 7.0 m3. It is installed at the CERN Neutrino Platform in a specially-constructed beam that delivers charged pions, kaons, protons, muons and electrons with momenta in the range 0.3 GeV/c to 7 GeV/c. Beam line instrumentation provides accurate momentum measurements and particle identification. The ProtoDUNE-SP detector is a prototype for the first far detector module of the Deep Underground Neutrino Experiment, and it incorporates full-size components as designed for that module. This paper describes the beam line, the time projection chamber, the photon detectors, the cosmic-ray tagger, the signal processing and particle reconstruction. It presents the first results on ProtoDUNE-SP's performance, including noise and gain measurements, dE/dx calibration for muons, protons, pions and electrons, drift electron lifetime measurements, and photon detector noise, signal sensitivity and time resolution measurements. The measured values meet or exceed the specifications for the DUNE far detector, in several cases by large margins. ProtoDUNE-SP's successful operation starting in 2018 and its production of large samples of high-quality data demonstrate the effectiveness of the single-phase far detector design.
BackgroundMany acute respiratory illness surveillance systems collect and test nasopharyngeal (NP) and/or oropharyngeal (OP) swab specimens, yet there are few studies assessing the relative measures of performance for NP versus OP specimens.MethodsWe collected paired NP and OP swabs separately from pediatric and adult patients with influenza-like illness or severe acute respiratory illness at two respiratory surveillance sites in Kenya. The specimens were tested for eight respiratory viruses by real-time reverse transcription-polymerase chain reaction (qRT-PCR). Positivity for a specific virus was defined as detection of viral nucleic acid in either swab.ResultsOf 2,331 paired NP/OP specimens, 1,402 (60.1%) were positive for at least one virus, and 393 (16.9%) were positive for more than one virus. Overall, OP swabs were significantly more sensitive than NP swabs for adenovirus (72.4% vs. 57.6%, p<0.01) and 2009 pandemic influenza A (H1N1) virus (91.2% vs. 70.4%, p<0.01). NP specimens were more sensitive for influenza B virus (83.3% vs. 61.5%, p = 0.02), parainfluenza virus 2 (85.7%, vs. 39.3%, p<0.01), and parainfluenza virus 3 (83.9% vs. 67.4%, p<0.01). The two methods did not differ significantly for human metapneumovirus, influenza A (H3N2) virus, parainfluenza virus 1, or respiratory syncytial virus.ConclusionsThe sensitivities were variable among the eight viruses tested; neither specimen was consistently more effective than the other. For respiratory disease surveillance programs using qRT-PCR that aim to maximize sensitivity for a large number of viruses, collecting combined NP and OP specimens would be the most effective approach.
The deep underground neutrino experiment (DUNE), a 40-kton underground liquid argon time projection chamber experiment, will be sensitive to the electron-neutrino flavor component of the burst of neutrinos expected from the next Galactic core-collapse supernova. Such an observation will bring unique insight into the astrophysics of core collapse as well as into the properties of neutrinos. The general capabilities of DUNE for neutrino detection in the relevant few- to few-tens-of-MeV neutrino energy range will be described. As an example, DUNE’s ability to constrain the $$\nu _e$$ ν e spectral parameters of the neutrino burst will be considered.
The sensitivity of the Deep Underground Neutrino Experiment (DUNE) to neutrino oscillation is determined, based on a full simulation, reconstruction, and event selection of the far detector and a full simulation and parameterized analysis of the near detector. Detailed uncertainties due to the flux prediction, neutrino interaction model, and detector effects are included. DUNE will resolve the neutrino mass ordering to a precision of 5$$\sigma $$ σ , for all $$\delta _{\mathrm{CP}}$$ δ CP values, after 2 years of running with the nominal detector design and beam configuration. It has the potential to observe charge-parity violation in the neutrino sector to a precision of 3$$\sigma $$ σ (5$$\sigma $$ σ ) after an exposure of 5 (10) years, for 50% of all $$\delta _{\mathrm{CP}}$$ δ CP values. It will also make precise measurements of other parameters governing long-baseline neutrino oscillation, and after an exposure of 15 years will achieve a similar sensitivity to $$\sin ^{2} 2\theta _{13}$$ sin 2 2 θ 13 to current reactor experiments.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.