The bioremediation of aqueous wastes containing 5-nitro-1,2,4-triazol-3-one (NTO) was investigated. The microorganism used is a Bacillus licheniformis strain, isolated from the contaminated solutions by enrichment techniques. The biodegradation was carried out in the waste (15 g l-1 NTO) and proceeded through the nitroreduction of NTO, followed by the ring cleavage of the formed primary amine 5-amino-1,2,4-triazol-3-one (ATO). Both steps were optimized and according to the optimal conditions, the nitroreduction of NTO is total in 24 h, while the degradation of ATO requires 2 weeks of incubation. The end products of the biodegradation were carbon dioxide (40%), urea and a polar compound, assumed to be hydroxyurea. A mechanism of ATO ring cleavage was postulated in the light of experimental data, and led us to propose an overall degradation sequence for NTO.
A Rhizobium sp. strain, named PATR, was isolated from an agricultural soil and found to actively degrade the herbicide atrazine. Incubation of PATR in a basal liquid medium containing 30 mg of atrazine liter(sup-1) resulted in the rapid consumption of the herbicide and the accumulation of hydroxyatrazine as the only metabolite detected after 8 days of culture. Experiments performed with ring-labeled [(sup14)C]atrazine indicated no mineralization. The enzyme responsible for the hydroxylation of atrazine was partially purified and found to consist of four 50-kDa subunits. Its synthesis in PATR was constitutive. This new atrazine hydrolase demonstrated 92% sequence identity through a 24-amino-acid fragment with atrazine chlorohydrolase AtzA produced by Pseudomonas sp. strain ADP.
ErratumIn situ localization and quantification of surfactins in a Bacillus subtilis swarming community by imaging mass spectrometry By D.
In the present study, we synthesized '"C-labelled 5-nitro-l,2,4-triazol-3-one (NTO) and investigated its hepatic metabolism by dexamethasone-induced murine hepatic microsomes. Under the nitrogen atmosphere, 5-amino-l,2,4-triazol-3-one was the only detected metabolite of NTO. The microsomal nitroreductase activity was dependent on NADPH, totally inhibited by carbon monoxide and partially inhibited by oxygen. In aerobic conditions, beside a low amount of amine, the major metabolite formed is the 5-hydroxy-triazolone, urazole. This compound resulted from the oxidative denitrification of NTO, which produced equivalent amount of nitrite. This reaction, like the nitroreductaae activity, was dependent on NADPH and totally inhibited by carbon monoxide. Both nitroreduction and oxidative denitrification were inhibited by imidazole-related inhibitors : miconazole and methimazole, and to a less extent by N-octylamine. The microsomal denitrification was induced by the treatment of rats with dexamethasone and phenobarbital. The microsomal reductare activity is present in untreated rat microsomes, and recovered with various inducers. The results of this study indicate the role played by cytochrome P-450 in the metabolism of NTO, supported by its transformation with reconstituted cytochrome P-450 systems.Keywords: nitrotriazolone; cytochrome P-450; nitroreductase; denitrification; dexamethasone.The explosive 5-nitro-1,2,4-triazol-3-one (NTO) 1 is thermally stable and impact-insensitive [ 11. Its high performance and stability [2, 31 made it of considerable interest to both the defense and civilian sectors. NTO is produced in many countries in multi-ton amounts for large scale formulation and evaluation. Consequently, it is a potential source of pollution in soils and waters around facilities where it is made or used. Several examples of such ecological and health damage caused by explosives in and around military facilities have been reported [4-61. The impact of NTO on the environment has not yet been investigated, and any potential risk can only be accurately predicted when knowledge of its metabolism in mammalian tissues is available. Toxicological studies on NTO indicate that the molecule is not toxic to mice or rats when given orally (LD,,, > 5g/ kg), and is a mild irritant when applied to rabbit skin [7]. However, these investigations did not assess the carcinogenic properties that a molecule having the structure of NTO may possess, based on findings for other nitro-aromatic or nitro-heterocyclic explosives [6,8, 91. Thus, the metabolic intermediates produced during the nitroreduction of nitro compounds cause local damage in the liver [lo]. These intermediates are responsible for the cytotoxicity, neurotoxicity and chemosensitization of 2-nitroimidazole derivatives [II, 121, and for the mutagenicity, genotoxicity and carcinogenicity of nitro aromatic [8, 101 and nitro aliphatic compounds [ 131. Intermediates, including hydroxylamines, ring-opening products and activated oxygen species, are probably responsible for the bi...
Global warming has caused elevated seawater temperature and coral bleaching, including events on shallow reefs in the upper Gulf of Thailand (uGoT). Previous studies have reported an association between loss of zooxanthellae and coral bleaching. However, studies on the microbial diversity of prokaryotes and eukaryotes (microbiome) as coral holobionts are also important and this information is still limited in the uGoT. To address this shortcoming, this report provided baseline information on the prokaryotic (bacteria and archaea) and eukaryotic microbes of healthy and bleached colonies of four prevalent corals Acropora humilis, Acropora millepora, Platygyra sinensis, and Porites lutea and surrounding seawater and sediments, using 16S and 18S rRNA gene next-generation sequencing. Both prokaryotic and eukaryotic microbes showed isolated community profiles among sample types (corals, sediment, and seawater) (ANOSIM: P < 0.001, R = 0.51 for prokaryotic profiles and P < 0.001, R = 0.985 for eukaryotic microbe profiles). Among coral species, P. sinensis showed the most diverse prokaryotic community compared with the others (ANOSIM: P < 0.001, R = 0.636), and P. lutea showed the most diverse eukaryotic microbes (P = 0.014, R = 0.346). Healthy and bleached corals had some different microbiomes in species and their prevalences. For instance, the significant increase of Alphaproteobacteria in P. sinensis resulted in reduced prokaryotic community evenness and altered potential metabolic profiles (i.e., increased amino acid metabolism and genetic information processing and transcription, but decreased prokaryotic functions in cell motility, signaling, and transduction). For eukaryotic microbes, the loss of the algal Symbiodinium (colloquially known as zooxanthellae) in bleached corals such as P. lutea resulted in increased Chromista and Protista and, hence, clearly distinct eukaryotic microbe (including fungi) communities in healthy vs. bleached colonies of corals. Bleached corals were enriched in bacterial pathogens (e.g., Acinetobacter, Helicobacter, Malassesia, and Aspergillus) and decreased coral-beneficial prokaryotic and eukaryotic microbes (e.g., Rhizobiales and Symbiodinium). Additionally, this study identified microbiome species in bleached P. lutea that might help bleaching recovery (e.g., high abundance of Rhizobiales, Oceanospirillales, Flavobacteriales, and Alteromonadales). Overall, our coral-associated microbiome analyses identified altered diversity patterns of bacteria, archaea, fungi, and eukaryotic microbes between healthy and bleached coral species that are prevalent in the uGoT. This knowledge supports our ongoing efforts to manipulate microbial diversity as a means of reducing the negative impacts of thermal bleaching events in corals inhabiting the uGoT.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.