Memristors with synaptic functions are very promising for developing artificial neural networks. Compared with the extensively reported spike-timingdependent plasticity (STDP), Bienenstock, Cooper, and Munro (BCM) learning rules, the most accurate model of the synaptic plasticity to date, are more compatible with the neural computing system; however, the progress in the realization of the BCM rules has been quite limited. The realized BCM rules so far mostly performs just the spike-rate-dependent plasticity (SRDP), however, without a tunable sliding frequency threshold, because the memristors used to realize the BCM rules do not have tunable forgetting rates. In this work, the BCM rules with a tunable sliding frequency threshold are biorealistically implemented in SrTiO 3 -based second-order memristors; the forgetting rate of the memristors is tuned by engineering the electrode/oxide interface through controlling the electrode composition. The approach of this work is precise and efficient, and the biorealistic implementation of the BCM rules in memristors improves the efficiency of the neural network for the artificial intelligent system.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.