In this paper, machines are allocated in horizontal rows along sides of an automated guided vehicle path so that the total cost of material transportation between machines is optimised. The problems of locating machines in single, double and multi-row layouts are addressed. Different layout arrangements as well as random permutations of machines are obtained using a simple construction algorithm, then the search for optimal solution and the best machine arrangements is obtained by implementing both Ant Colony and Simulated Annealing algorithms. Computational test examples show that the proposed method provides the best-known solutions for the single-row and double-row layout problems. Furthermore, experimental results demonstrate that both algorithms provide identical solutions for the single and multi-row layout problems.
This paper proposes novel and generalized expressions to characterize the performance of modern cellular networks under realistic user mobility behavior. The η-µ distribution is employed to derive the received power probability density function, the average bit error rate for different modulation schemes, and the coverage probability assuming a Poisson point process spatial distribution of base stations in downlink. The user is assumed to experience fading with Maximum Ratio Combining (MRC) and move according to a random way-point mobility model. To get more insights on the achivable diversity order, accurate asymptotic expressions for the coverage probability and average bit error rate are derived. The derived expressions are applicable to different widely-used fading environments, such as Rayleigh and Nakagami-m as particular cases, by an appropriate selection of the η-µ parameters. Monte Carlo simulation was used to show the validity of the proposed expressions. In addition, the generalized expressions allow the system designer to quantify the effects of user mobility on the cellular network performance, in different propagation environments, and network topologies as a function of the number of base stations and MRC branches.
The effectiveness of fluid resuscitation regimens in hemorrhagic trauma is assessed based on its ability to increase oxygen concentration in tissue. Fluid resuscitation using both crystalloids and colloids fluids, creates a dilemma due to its opposing effects on oxygen transfer. It increases blood flow thereby augmenting oxygen transport but it also dilutes the blood simultaneously and reduces oxygen concentration thereby reducing oxygen transport. In this work we have studied these two opposing effects of fluid therapy on oxygen delivery to tissue. A mathematical model of oxygen diffusion from capillaries to tissue and its distribution in tissue was developed and integrated into a previously developed hemodynamic model. The capillary-tissue model was based on the Krogh structure. Compared to other models, fewer simplifying assumptions were made leading to different boundary conditions and less constraints, especially regarding capillary oxygen content at its venous end. Results showed that oxygen content in blood is the dominant factor in oxygen transport to tissue and its effect is greater than the effect of flow. The integration of the capillary/tissue model with the hemodynamic model that links administered fluids with flow and blood dilution indicated that fluid resuscitation may reduce oxygen transport to tissue.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.