Malonate diesters with highly branched side chains containing a preexisting chiral center were prepared from optically pure amino alcohols and subjected to asymmetric enzymatic hydrolysis by Porcine Liver Esterase (PLE). Recombinant PLE isoenzymes have been utilized in this work to synthesize diastereomerically enriched malonate half‐esters from enantiopure malonate diesters. The diastereomeric excess of the product half‐esters was further improved in the later steps of synthesis either by simple recrystallization or flash column chromatography. The diastereomerically enriched half‐ester was transformed into a novel 5‐substituted Cα‐methyl‐β‐proline analogue (3R,5S)‐1c, in high optical purity employing a stereoselective cyclization methodology. This β‐proline analogue was tested for activity as a catalyst of the Mannich reaction. The β‐proline analogue derived from the hydrolysis reaction by the crude PLE appeared to catalyze the Mannich reaction between an α‐imino ester and an aldehyde providing decent to good diastereoselectivities. However, the enantioselectivities in the reaction was low. The second diastereomer of the 5‐benzyl‐substituted Cα‐methyl‐β‐proline, (3S,5S)‐1c was prepared by enzymatic hydrolysis using PLE isoenzyme 3 and tested for its catalytic activity in the Mannich reaction. Amino acid, (3S,5S)‐1c catalyzed the Mannich reaction between isovaleraldehyde and an α‐imino ester yielding the “anti” selective product with an optical purity of 99 %ee.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.