Deletions of the Plasmodium falciparum hrp2 and hrp3 genes can affect the performance of HRP2-based malaria rapid diagnostic tests (RDTs). Such deletions have been reported from South America, India and Eritrea. Whether these parasites are widespread in East Africa is unknown. A total of 274 samples from asymptomatic children in Mbita, western Kenya, and 61 genomic data from Kilifi, eastern Kenya, were available for analysis. PCR-confirmed samples were investigated for the presence of pfhrp2 and pfhrp3 genes. In samples with evidence of deletion, parasite presence was confirmed by amplifying three independent genes. We failed to amplify pfhrp2 from 25 of 131 (19.1%) PCR-confirmed samples. Of these, only 8 (10%) samples were microscopic positive and were classified as pfhrp2-deleted. Eight microscopically-confirmed pfhrp2-deleted samples with intact pfhrp3 locus were positive by HRP2-based RDT. In addition, one PCR-confirmed infection showed a deletion at the pfhrp3 locus. One genomic sample lacked pfhrp2 and one lacked pfhrp3. No sample harbored parasites lacking both genes. Parasites lacking pfhrp2 are present in Kenya, but may be detectable by HRP-based RDT at higher parasitaemia, possibly due to the presence of intact pfhrp3. These findings warrant further systematic study to establish prevalence and diagnostic significance.
Background Malaria rapid diagnostic tests (mRDTs) that target histidine-rich protein 2 (HRP2) are important tools for Plasmodium falciparum diagnosis. Parasites with pfhrp2/3 gene deletions threaten the use of these mRDTs and have been reported in Africa, Asia, and South America. We studied blood samples from 3 African countries to determine if these gene deletions were present. Methods We analyzed 911 dried blood spots from Ghana (n = 165), Tanzania (n = 176), and Uganda (n = 570). Plasmodium falciparum infection was confirmed by 18S rDNA polymerase chain reaction (PCR), and pfhrp2/3 genes were genotyped. True pfhrp2/3 gene deletions were confirmed if samples were (1) microscopy positive; (2) 18S rDNA PCR positive; (3) positive for merozoite surface protein genes by PCR or positive by loop-mediated isothermal amplification; or (4) quantitative PCR positive with >5 parasites/µL. Results No pfhrp2/3 deletions were detected in samples from Ghana, but deletions were identified in Tanzania (3 pfhrp2; 2 pfhrp3) and Uganda (7 pfhrp2; 2 pfhrp3). Of the 10 samples with pfhrp2 deletions, 9 tested negative by HRP2-based mRDT. Conclusions The presence of pfhrp2/3 deletions in Tanzania and Uganda, along with reports of pfhrp2/3-deleted parasites in neighboring countries, reinforces the need for systematic surveillance to monitor the reliability of mRDTs in malaria-endemic countries.
Background Vector mosquito biting intensity is an important measure to understand malaria transmission. Human landing catch (HLC) is an effective but labour-intensive, expensive, and potentially hazardous entomological surveillance tool. The Centres for Disease Control light trap (CDC-LT) and the human decoy trap (HDT) are exposure-free alternatives. This study compared the CDC-LT and HDT against HLC for measuring Anopheles biting in rural Tanzania and assessed their suitability as HLC proxies. Methods Indoor mosquito surveys using HLC and CDC-LT and outdoor surveys using HLC and HDT were conducted in 2017 and in 2019 in Ulanga, Tanzania in 19 villages, with one trap/house/night. Species composition, sporozoite rates and density/trap/night were compared. Aggregating the data by village and month, the Bland–Altman approach was used to assess agreement between trap types. Results Overall, 66,807 Anopheles funestus and 14,606 Anopheles arabiensis adult females were caught with 6,013 CDC-LT, 339 indoor-HLC, 136 HDT and 195 outdoor-HLC collections. Indoors, CDC-LT caught fewer An. arabiensis (Adjusted rate ratio [Adj.RR] = 0.35, 95% confidence interval [CI]: 0.27–0.46, p < 0.001) and An. funestus (Adj.RR = 0.63, 95%CI: 0.51–0.79, p < 0.001) than HLC per trap/night. Outdoors, HDT caught fewer An. arabiensis (Adj.RR = 0.04, 95%CI: 0.01–0.14, p < 0.001) and An. funestus (Adj.RR = 0.10, 95%CI: 0.07–0.15, p < 0.001) than HLC. The bias and variability in number of mosquitoes caught by the different traps were dependent on mosquito densities. The relative efficacies of both CDC-LT and HDT in comparison to HLC declined with increased mosquito abundance. The variability in the ratios was substantial for low HLC counts and decreased as mosquito abundance increased. The numbers of sporozoite positive mosquitoes were low for all traps. Conclusions CDC-LT can be suitable for comparing mosquito populations between study arms or over time if accuracy in the absolute biting rate, compared to HLC, is not required. CDC-LT is useful for estimating sporozoite rates because large numbers of traps can be deployed to collect adequate mosquito samples. The present design of the HDT is not amenable for use in large-scale entomological surveys. Use of HLC remains important for estimating human exposure to mosquitoes as part of estimating the entomological inoculation rate (EIR).
Background: With increasing insecticide resistance in malaria-endemic countries there is an urgent need for safe and effective novel vector control products. To improve the capacity of facilities that test insecticides in sub-Saharan Africa, a programme is supporting seven facilities towards Good Laboratory Practice (GLP) certification, the globally recognized standard for quality management system (QMS) for the conduct of non-clinical and environmental studies. The World Health Organization (WHO) GLP Handbook provides guidance on a stepwise approach to implement a GLP compliant QMS. This study assesses auditor GLP checklists and timings outlined in the WHO GLP Handbook in the real-life context of a Tanzanian insecticide-testing facility, evaluating their implementation in this context. Methods and Principle Findings: We conducted document review and semi-structured interviews with staff at all levels of the test facility to explore factors that influenced progress towards GLP certification. We found that while auditor GLP checklists underemphasised computer systems, they were otherwise broadly applicable. Factors that delayed time to completion of GLP certification included the need for extensive infrastructure improvements, the availability of regional expertise related to GLP, the capacity of national and regional external systems and services to meet GLP compliance requirements, and training development required for Standard Operating Procedure implementation. Conclusion: The standards required for full GLP compliance are rigorous, with an expected completion timeline to implementation of 24 months. This study shows that in low and middle-income countries this timeline may be unrealistic due to challenges related to infrastructure development and lack of regional capacity and expertise. We recommend a comprehensive gap analysis when starting a project, including these areas which are beyond those recommended by the WHO GLP Handbook. These challenges can be successfully overcome and the experience in Tanzania provides key lessons for other facilities seeking GLP certification or the development of similar QMS.
BackgroundThe intensity of vector mosquito biting is an important measure for malaria epidemiology and control. The human landing catch (HLC) is an effective entomological surveillance tool, but is labour-intensive, expensive and raises safety issues. The Centres for Disease Control light trap (CDC LT) and the human decoy trap (HDT) are less costly and exposure-free alternatives. This study compared the CDC LT and HDT against the HLC for measuring Anopheles (An.) biting in rural Tanzania and assessed their suitability as HLC proxies.MethodsIndoor mosquito surveys using HLC and CDC LT and outdoor surveys using HLC and HDT were conducted in 2017 and in 2019 in Ulanga, Tanzania in 19 villages, with one trap per house per night. Species composition, sporozoite rates and the numbers of mosquitoes caught by different trap types were compared. Aggregating the data by village and month, the Bland-Altman approach was used to assess agreement. ResultsOverall, 66,807 Anopheles funestus and 14,606 An. arabiensis adult females were caught from 6,013 CDC LT, 339 indoor HLC, 136 HDT and 195 outdoor HLC collections. Overall, the CDC LT caught fewer malaria vectors than indoor HLC: An. arabiensis (Adjusted rate ratio (Adj.RR) =0.35 (95% confidence interval (CI):0.27-0.46)) and An. funestus (Adj.RR=0.63(95%CI:0.51-0.79)). HDT caught fewer malaria vectors than outdoor HLC: An. arabiensis (Adj.RR=0.04(95%CI:0.01-0.14)) and An. funestus (Adj.RR=0.10(95%CI:0.07-0.15)). The bias and variability of the ratios of geometric mean mosquitoes caught by CDC LT and HDT relative to HLC collections for the same village-month were dependent on mosquito densities. The relative efficacies of both CDC LT and HDT declined with mosquito abundance. The variability in the ratios was substantial for low HLC counts and decreased as mosquito abundance increased. CDCLT caught a higher proportion of infected An. arabiensis and An. funestus than HLC, and HDT caught no infected mosquitoes.ConclusionsIf caution is taken in appreciation of its limitations, the CDC LT is suitable for use in routine entomological surveys and may be preferable for measuring sporozoite rates for Afrotropical mosquitoes. Use of HLC is useful to estimate human exposure to mosquitoes for estimating Entomological Inoculation Rate (EIR). The present design of the HDT is not amenable for use to conduct large-scale entomological surveys.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.