Global technological advancements drive daily energy consumption, generating additional carbon-induced climate challenges. Modifying process parameters, optimizing design, and employing high-performance working fluids are among the techniques offered by researchers for improving the thermal efficiency of heating and cooling systems. This study investigates the heat transfer enhancement of hybrid “Al2O3-Cu/water” nanofluids flowing in a two-dimensional channel with semicircle ribs. The novelty of this research is in employing semicircle ribs combined with hybrid nanofluids in turbulent flow regimes. A computer modeling approach using a finite volume approach with k-ω shear stress transport turbulence model was used in these simulations. Six cases with varying rib step heights and pitch gaps, with Re numbers ranging from 10,000 to 25,000, were explored for various volume concentrations of hybrid nanofluids Al2O3-Cu/water (0.33%, 0.75%, 1%, and 2%). The simulation results showed that the presence of ribs enhanced the heat transfer in the passage. The Nusselt number increased when the solid volume fraction of “Al2O3-Cu/water” hybrid nanofluids and the Re number increased. The Nu number reached its maximum value at a 2 percent solid volume fraction for a Reynolds number of 25,000. The local pressure coefficient also improved as the Re number and volume concentration of “Al2O3-Cu/water” hybrid nanofluids increased. The creation of recirculation zones after and before each rib was observed in the velocity and temperature contours. A higher number of ribs was also shown to result in a larger number of recirculation zones, increasing the thermal performance.
This work was influenced the separation and preconcentration steps were carried out to determination of metformin (MET) in pharmaceutical preparations and human serum samples. Complex formation method and cloud-point extraction (CPE) coupling with UV-Visible spectrophotometry were used to investigated of study target.The results has showed the best optical characteristic for calibration curve and statistical data which were obtained under optimum conditions. The first method is based on the reaction of MET with nickel (II) in alkaline medium an absorption maximum ?)max) at 434nm. ''Beer's low'' is obeyed in the concentration range (10-100µg.ml-1) with molar absorptivity of 3.9x103 L.mol-1.cm-1.The limit of detection and quantitation values were 2.37 and7.11 µg.ml-1 respectively. The second method based on extraction of traces amounts of MET using the cloud-point extraction (CPE). This method implicated for using of a nonionic surfactant (Triton x-114) as an extraction medium which was entrap the hydrophobic complex formed between MET and nickel(ii) in basic medium as reaction system for designing the CPE procedure. The optimum conditions were similar the first method expect the amount of surfactant which was 0.5 ml. The concentrations range of calibration curve from 3.5to100 µg.ml-1 and molar absorptivity of 1.2x104 L.mol-1.cm-1. In this method was access to less of concentrations in Limit of detection and quantitation which were 0.74and 2.22 µg.ml-1 respectively. The precise (RSD %) and accuracy (recovery %) of both methods were ranged between 0.24-0.47, 97.86-98.68 respectively. The data of two methods were appeared high acceptable with standered of British Pharmacopoeia through using statistic methods (f-test and t-test), that they may be used in analysis of MET.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.