Many governments are considering adopting the smart city concept in their cities and implementing big data applications that support smart city components to reach the required level of sustainability and improve the living standards. Smart cities utilize multiple technologies to improve the performance of health, transportation, energy, education, and water services leading to higher levels of comfort of their citizens. This involves reducing costs and resource consumption in addition to more effectively and actively engaging with their citizens. One of the recent technologies that has a huge potential to enhance smart city services is big data analytics. As digitization has become an integral part of everyday life, data collection has resulted in the accumulation of huge amounts of data that can be used in various beneficial application domains. Effective analysis and utilization of big data is a key factor for success in many business and service domains, including the smart city domain. This paper reviews the applications of big data to support smart cities. It discusses and compares different definitions of the smart city and big data and explores the opportunities, challenges and benefits of incorporating big data applications for smart cities. In addition it attempts to identify the requirements that support the implementation of big data applications for smart city services. The review reveals that several opportunities are available for utilizing big data in smart cities; however, there are still many issues and challenges to be addressed to achieve better utilization of this technology.
Blockchain technologies have recently come to the forefront of the research and industrial communities as they bring potential benefits for many industries. This is due to their practical capabilities in solving many issues currently inhibiting further advances in various industrial domains. Securely recording and sharing transactional data, establishing automated and efficient supply chain processes, and enhancing transparency across the whole value chain are some examples of these issues. Blockchain offers an effective way to tackle these issues using distributed, shared, secure, and permissioned transactional ledgers. The employment of blockchain technologies and the possibility of applying them in different situations enables many industrial applications through increased efficiency and security; enhanced traceability and transparency; and reduced costs. In this paper, different industrial application domains where the use of blockchain technologies has been proposed are reviewed. This paper explores the opportunities, benefits, and challenges of incorporating blockchain in different industrial applications. Furthermore, the paper attempts to identify the requirements that support the implementation of blockchain for different industrial applications. The review reveals that several opportunities are available for utilizing blockchain in various industrial sectors; however, there are still some challenges to be addressed to achieve better utilization of this technology.
This paper discusses the applications of unmanned aerial vehicles (UAVs) in smart cities, their opportunities and their challenges. UAVs have a wide range of applications in many fields like environmental hazards monitoring, traffic management and pollution monitoring, all of which contributes greatly to the development of any smart city. These opportunities among several others are discussed in this paper. Several challenges and issues such as safety, privacy and ethical uses are of great concern and are also provided in this paper.
As the costs of healthcare services rise and healthcare professionals are becoming scarce and hard to find, it is imminent that healthcare organizations consider adopting health information technology (HIT) systems. HIT allows health organizations to streamline many of their processes and provide services in a more efficient and cost-effective manner. The latest technological trends such as Cloud Computing (CC) provide a strong infrastructure and offer a true enabler for HIT services over the Internet. This can be achieved on a pay-as-you-use model of the “e-Health Cloud” to help the healthcare industry cope with current and future demands yet keeping their costs to a minimum. Despite its great potential, HIT as a CC model has not been addressed extensively in the literature. There are no apparent frameworks which clearly encompass all viable schemes and interrelationships between HIT and CC. Therefore, analyzing and comparing the effectiveness of such schemes is important. In this paper we introduce the concept of “e-Health Cloud” highlighting many of its constituents and proposing building an e-health environment and elucidating many of the challenges confronting the success of the e-Health Cloud. We will also discuss different possible solutions to address challenges such as security and privacy
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.