The current hypothesis of alveolar capillary membrane dysfunction fails to completely explain the severe and persistent leak of protein-rich fluid into the pulmonary interstitium, seen in the exudative phase of acute lung injury (ALI). The presence of intact red blood cells in the pulmonary interstitium may suggest mechanical failure of pulmonary arterioles and venules. These studies involved the pathological and ultrastructural evaluation of the pulmonary vasculature in Staphylococcal enterotoxin B(SEB)-induced ALI. Administration of SEB resulted in a significant increase in the protein concentration of bronchoalveolar lavage fluid and vascular leak in SEB-exposed mice compared to vehicle-treated mice. In vivo imaging of mice demonstrated the pulmonary edema and leakage in the lungs of SEB-administered mice. The histopathological studies showed intense clustering of inflammatory cells around the alveolar capillaries with subtle changes in architecture. Electron microscopy studies further confirmed the diffuse damage and disruption in the muscularis layer of the terminal vessels. Cell death in the endothelial cells of the terminal vessels was confirmed with TUNEL staining. In this study, we demonstrated that in addition to failure of the alveolar capillary membrane, disruption of the pulmonary arterioles and venules may explain the persistent and severe interstitial and alveolar edema.
Two siblings were identified with severe hypoproliferative microcytic anemia and iron malabsorption, in the absence of any gastrointestinal disorder or blood loss. These children had severe microcytosis (MCV 48 fl, hemoglobin 7.5 g/dl) with decreased serum iron, elevated serum TIBC, and decreased serum ferritin, despite prolonged treatment with oral iron. An iron challenge study with an oral dose of 2 mg/kg elemental iron as ferrous sulfate documented iron malabsorption. After treatment with intravenous iron dextran, there was an absence of the expected reticulocytosis and only a partial correction of the hemoglobin, hematocrit, and microcytosis. The bone marrow was hypocellular with abnormal iron incorporation into erythroid precursor cells. This appears to be a rare form of inherited anemia characterized by iron malabsorption and disordered iron metabolism that only partially corrects after the administration of parenteral iron. These features resemble those found in the microcytic mouse (mk/mk), which also has severe microcytic anemia and iron malabsorption that partially responds to parenteral iron.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.