SUMMARY Studies of Parkinson’s disease (PD) have been greatly hindered by lack of access to affected human dopaminergic (DA) neurons. Here, we report generation of induced pluripotent stem cells that carry the p.G2019S mutation (G2019S-iPSCs) in the Leucine-Rich Repeat Kinase-2 (LRRK2) gene, the most common PD-related mutation. We demonstrate that these G2019S-iPSCs were able to differentiate into DA neurons and showed increased expression of key oxidative stress response genes and α-synuclein protein. Moreover, G2019S-mutant DA neurons were more sensitive to caspase-3 activation, caused by exposure to hydrogen peroxide, MG-132, and 6-hydroxydopamine, compared to unaffected DA neurons. These findings suggest that G2019S-iPSC-derived DA neurons exhibit early phenotypes linked to PD. Due to high penetrance of the LRRK2 mutation and its clinical resemblance to sporadic PD, these neurons may provide a valuable platform for identification of novel pharmacological agents and diagnostics for modeling and alleviation of a subset of disease phenotypes.
Derivation of embryonic stem (ES) cells genetically identical to a patient by somatic cell nuclear transfer (SCNT) holds the potential to cure or alleviate the symptoms of many degenerative diseases while circumventing concerns regarding rejection by the host immune system. However, the concept has only been achieved in the mouse, whereas inefficient reprogramming and poor embryonic development characterizes the results obtained in primates. Here, we used a modified SCNT approach to produce rhesus macaque blastocysts from adult skin fibroblasts, and successfully isolated two ES cell lines from these embryos. DNA analysis confirmed that nuclear DNA was identical to donor somatic cells and that mitochondrial DNA originated from oocytes. Both cell lines exhibited normal ES cell morphology, expressed key stem-cell markers, were transcriptionally similar to control ES cells and differentiated into multiple cell types in vitro and in vivo. Our results represent successful nuclear reprogramming of adult somatic cells into pluripotent ES cells and demonstrate proof-of-concept for therapeutic cloning in primates.
ESCs are important as research subjects since the mechanisms underlying cellular differentiation, expansion, and self-renewal can be studied along with differentiated tissue development and regeneration in vitro. Furthermore, human ESCs hold promise for cell and tissue replacement approaches to treating human diseases. The rhesus monkey is a clinically relevant primate model that will likely be required to bring these clinical applications to fruition. Monkey ESCs share a number of properties with human ESCs, and their derivation and use are not affected by bioethical concerns. Here, we summarize our experience in the establishment of 18 ESC lines from rhesus monkey preimplantation embryos generated by the application of the assisted reproductive technologies. The newly derived monkey ESC lines were maintained in vitro without losing their chromosomal integrity, and they expressed markers previously reported present in human and monkey ESCs. We also describe initial efforts to compare the pluripotency of ESC lines by expression profiling, chimeric embryo formation, and in vitro-directed differentiation into endodermal, mesodermal, and ectodermal lineages.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.