Natural polyphenols with previously demonstrated anticancer potential, epigallocatechin gallate (EGCG), tannic acid, curcumin, and theaflavin, were encased into gelatin-based 200 nm nanoparticles consisting of a soft gel-like interior with or without a surrounding LbL shell of polyelectrolytes (polystyrene sulfonate/polyallylamine hydrochloride, polyglutamic acid/poly-l-lysine, dextran sulfate/protamine sulfate, carboxymethyl cellulose/gelatin, type A) assembled using the layer-by-layer technique. The characteristics of polyphenol loading and factors affecting their release from the nanocapsules were investigated. Nanoparticle-encapsulated EGCG retained its biological activity and blocked hepatocyte growth factor (HGF)-induced intracellular signaling in the breast cancer cell line MBA-MD-231 as potently as free EGCG.
Conditions were established in which Legionella pneumophila, an intracellular bacterial pathogen, could replicate within the unicellular organism Dictyostelium discoideum. By several criteria, L. pneumophila grew by the same mechanism within D. discoideum as it does in amoebae and macrophages. Bacteria grew within membrane-bound vesicles associated with rough endoplasmic reticulum, and L. pneumophila dot/icm mutants, blocked for growth in macrophages and amoebae, also did not grow in D. discoideum. Internalized L. pneumophila avoided degradation by D. discoideum and showed evidence of reduced fusion with endocytic compartments. The ability of L. pneumophila to grow within D. discoideum depended on the growth state of the cells. D. discoideum grown as adherent monolayers was susceptible to L. pneumophila infection and to contact-dependent cytotoxicity during high-multiplicity infections, whereas D. discoideum grown in suspension was relatively resistant to cytotoxicity and did not support intracellular growth. Some known D. discoideum mutants were examined for their effect on growth of L. pneumophila. The coronin mutant and the myoA/B double myosin I mutant were more permissive than wild-type strains for intracellular growth. Growth of L. pneumophila in a G  mutant was slightly reduced compared to the parent strain. This work demonstrates the usefulness of the L. pneumophila-D. discoideum system for genetic analysis of host-pathogen interactions.
Rapamycin, an inhibitor of the mammalian target of rapamycin (mTOR), inhibits tumor cell motility. However, the underlying mechanism is poorly understood. Here, we show that rapamycin inhibited type I insulin-like growth factor (IGF-I)-stimulated motility of a panel of cell lines. Expression of a rapamycin-resistant mutant of mTOR (mTORrr) prevented rapamycin inhibition of cell motility. However, cells expressing a kinase-dead mTORrr remained sensitive to rapamycin. Downregulation of raptor or rictor by RNA interference (RNAi) decreased cell motility. However, only downregulation of raptor mimicked the effect of rapamycin, inhibiting phosphorylation of S6 kinase 1 (S6K1) and 4E-BP1. Cells infected with an adenovirus expressing constitutively active and rapamycin-resistant mutant of p70 S6K1, but not with an adenovirus expressing wild-type S6K1, or a control virus, conferred to resistance to rapamycin. Further, IGF-I failed to stimulate motility of the cells, in which S6K1 was downregulated by RNAi. Moreover, downregulation of eukaryotic initiation factor 4E (eIF4E)-binding protein 1 (4E-BP1) by RNAi-attenuated rapamycin inhibition of cell motility. In contrast, expression of constitutively active 4E-BP1 dramatically inhibited IGF-I-stimulated cell motility. The results indicate that both S6K1 and 4E-BP1 pathways, regulated by TORC1, are required for cell motility. Rapamycin inhibits IGF-I-stimulated cell motility, through suppression of both S6K1 and 4E-BP1/eIF4E-signaling pathways, as a consequence of inhibition of mTOR kinase activity.
The purpose of this study was to determine the effects of short-term supplementation with the active compounds in green tea on serum biomarkers in patients with prostate cancer.Twenty-six men with positive prostate biopsies and scheduled for radical prostatectomy were given daily doses of Polyphenon E, which contained 800 mg of (−)-epigallocatechin-3-gallate (EGCG) and lesser amounts of (−)-epicatechin, (−)-epigallocatechin, and (−)-epicatechin-
Phagocytosis and macropinocytosis are actin-dependent clathrin-independent processes primarily performed by cells like neutrophils and macrophages that result in the internalization of particles or the formation of fluid-filled macropinosomes, respectively. Phagocytosis consists of a number of stages, including attachment of particles to cell surface receptors, engulfment of the particle dependent on actin polymerization and membrane exocytosis, and formation of phago-lysosomes. In contrast, the molecular steps regulating macropinocytosis are only just now being deciphered. Much remains to be learned concerning the signaling pathways that regulate these processes. Dictyostelium is a genetically and biochemically tractable professional phagocyte that has proven to be a powerful system with which to determine the nature of the molecular steps involved in regulating these internalization processes. This review summarizes what is currently understood concerning the molecular mechanisms governing phagocytosis and macropinocytosis in Dictyostelium and describes recent data concerning the common and distinct pathways that regulate these processes.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.