SUMMARY Annotation of prostate cancer genomes provides a foundation for discoveries that can impact disease understanding and treatment. Concordant assessment of DNA copy number, mRNA expression, and focused exon resequencing in 218 prostate cancer tumors identified the nuclear receptor coactivator NCOA2 as an oncogene in ~11 percent of tumors. Additionally, the androgen-driven TMPRSS2-ERG fusion was associated with a previously unrecognized, prostate-specific deletion at chromosome 3p14 that implicates FOXP1, RYBP and SHQ1 as potential cooperative tumor suppressors. DNA copy-number data from primary tumors revealed that copy-number alterations robustly define clusters of low- and high-risk disease beyond that achieved by Gleason score. The genomic and clinical outcome data from these patients is now made available as a public resource.
Summary The lack of in vitro prostate cancer models that recapitulate the diversity of human prostate cancer has hampered progress in understanding disease pathogenesis and therapy response. Using a 3D “organoid” system, we report success in long-term culture of prostate cancer from biopsy specimens and circulating tumor cells. The first seven fully characterized organoid lines recapitulate the molecular diversity of prostate cancer subtypes, including TMPRSS2-ERG fusion, SPOP mutation, SPINK1 overexpression and CHD1 loss. Whole exome sequencing shows a low mutational burden, consistent with genomics studies, but with mutations in FOXA1 and PIK3R1, as well as of DNA repair and chromatin modifier pathways that have been reported in advanced disease. Loss of p53 and RB tumor suppressor pathway function are the most common feature shared across the organoid lines. The methodology described here should enable the generation of a large repertoire of patient-derived prostate cancer lines amenable to genetic and pharmacologic studies.
Background Despite revisions in 2005 and 2014, the Gleason prostate cancer (PCa) grading system still has major deficiencies. Combining of Gleason scores into a three-tiered grouping (6, 7, 8–10) is used most frequently for prognostic and therapeutic purposes. The lowest score, assigned 6, may be misunderstood as a cancer in the middle of the grading scale, and 3 + 4 = 7 and 4 + 3 = 7 are often considered the same prognostic group. Objective To verify that a new grading system accurately produces a smaller number of grades with the most significant prognostic differences, using multi-institutional and multimodal therapy data. Design, setting, and participants Between 2005 and 2014, 20 845 consecutive men were treated by radical prostatectomy at five academic institutions; 5501 men were treated with radiotherapy at two academic institutions. Outcome measurements and statistical analysis Outcome was based on biochemical recurrence (BCR). The log-rank test assessed univariable differences in BCR by Gleason score. Separate univariable and multivariable Cox proportional hazards used four possible categorizations of Gleason scores. Results and limitations In the surgery cohort, we found large differences in recurrence rates between both Gleason 3 + 4 versus 4 + 3 and Gleason 8 versus 9. The hazard ratios relative to Gleason score 6 were 1.9, 5.1, 8.0, and 11.7 for Gleason scores 3 + 4, 4 + 3, 8, and 9–10, respectively. These differences were attenuated in the radiotherapy cohort as a whole due to increased adjuvant or neoadjuvant hormones for patients with high-grade disease but were clearly seen in patients undergoing radiotherapy only. A five–grade group system had the highest prognostic discrimination for all cohorts on both univariable and multivariable analysis. The major limitation was the unavoidable use of prostate-specific antigen BCR as an end point as opposed to cancer-related death. Conclusions The new PCa grading system has these benefits: more accurate grade stratification than current systems, simplified grading system of five grades, and lowest grade is 1, as opposed to 6, with the potential to reduce overtreatment of PCa. Patient summary We looked at outcomes for prostate cancer (PCa) treated with radical prostatectomy or radiation therapy and validated a new grading system with more accurate grade stratification than current systems, including a simplified grading system of five grades and a lowest grade is 1, as opposed to 6, with the potential to reduce overtreatment of PCa.
The NCCN Guidelines for Prostate Cancer include recommendations regarding diagnosis, risk stratification and workup, treatment options for localized disease, and management of recurrent and advanced disease for clinicians who treat patients with prostate cancer. The portions of the guidelines included herein focus on the roles of germline and somatic genetic testing, risk stratification with nomograms and tumor multigene molecular testing, androgen deprivation therapy, secondary hormonal therapy, chemotherapy, and immunotherapy in patients with prostate cancer.
Purpose-A postoperative nomogram for prostate cancer recurrence after radical prostatectomy (RP) has been independently validated as accurate and discriminating. We have updated the nomogram by extending the predictions to 10 years after RP and have enabled the nomogram predictions to be adjusted for the disease-free interval that a patient has maintained after RP.Methods-Cox regression analysis was used to model the clinical information for 1,881 patients who underwent RP for clinically-localized prostate cancer by two high-volume surgeons. The model was externally validated separately on two independent cohorts of 1,782 patients and 1,357 patients, respectively. Disease progression was defined as a rising prostate-specific antigen (PSA) level, clinical progression, radiotherapy more than 12 months postoperatively, or initiation of systemic therapy. Results-The 10-year progression-free probability for the modeling set was 79% (95% CI, 75% to 82%). Significant variables in the multivariable model included PSA (P = .002), primary (P < . 0001) and secondary Gleason grade (P = .0006), extracapsular extension (P < .0001), positive surgical margins (P = .028), seminal vesicle invasion (P < .0001), lymph node involvement (P = . 030), treatment year (P = .008), and adjuvant radiotherapy (P = .046). The concordance index of the nomogram when applied to the independent validation sets was 0.81 and 0.79. Conclusion-We have developed and validated as a robust predictive model an enhanced postoperative nomogram for prostate cancer recurrence after RP. Unique to predictive models, the nomogram predictions can be adjusted for the disease-free interval that a patient has achieved after RP.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.