Abstract. We explore systematically the cumulative effect of many assumptions made in the Multi-angle Imaging SpectroRadiometer (MISR) research aerosol retrieval algorithm with the aim of quantifying the main sources of uncertainty over ocean, and correcting them to the extent possible. A total of 1129 coincident, surface-based sun photometer spectral aerosol optical depth (AOD) measurements are used for validation. Based on comparisons between these data and our baseline case (similar to the MISR standard algorithm, but without the "modified linear mixing" approximation), for 558 nm AOD < 0.10, a high bias of 0.024 is reduced by about one-third when (1) ocean surface under-light is included and the assumed whitecap reflectance at 672 nm is increased, (2) physically based adjustments in particle microphysical properties and mixtures are made, (3) an adaptive pixel selection method is used, (4) spectral reflectance uncertainty is estimated from vicarious calibration, and (5) minor radiometric calibration changes are made for the 672 and 866 nm channels. Applying (6) more stringent cloud screening (setting the maximum fraction not-clear to 0.50) brings all median spectral biases to about 0.01. When all adjustments except more stringent cloud screening are applied, and a modified acceptance criterion is used, the Root-Mean-Square-Error (RMSE) decreases for all wavelengths by 8-27 % for the research algorithm relative to the baseline, and is 12-36 % lower than the RMSE for the Version 22 MISR standard algorithm (SA, with no adjustments applied). At 558 nm, 87 % of AOD data falls within the greater of 0.05 or 20 % of validation values; 62 % of the 446 nm AOD data, and > 68 % of 558, 672, and 866 nm AOD values fall within the greater of 0.03 or 10 %. For the Ångström exponent (ANG), 67 % of 1119 validation cases for AOD > 0.01 fall within 0.275 of the sun photometer values, compared to 49 % for the SA. ANG RMSE decreases by 17 % compared to the SA, and the median absolute error drops by 36 %.
Abstract. The Multi-angle Imaging SpectroRadiometer (MISR) Research Aerosol algorithm makes it possible to study individual aerosol plumes in considerable detail. From the MISR data for two optically thick, near-source plumes of the spring 2010 Eyjafjallajökull volcano eruption, we map aerosol optical depth (AOD) gradients and changing aerosol particle types with this algorithm; several days downwind, we identify the occurrence of volcanic ash particles and retrieve AOD, demonstrating the extent and the limits of ash detection and mapping capability with the multi-angle, multi-spectral imaging data. Retrieved volcanic plume AOD and particle microphysical properties are distinct from background values near-source, as well as for over-water cases several days downwind. The results also provide some indication that as they evolve, plume particles brighten, and average particle size decreases. Such detailed mapping offers context for suborbital plume observations having much more limited sampling. The MISR Standard aerosol product identified similar trends in plume properties as the Research algorithm, though with much smaller differences compared to background, and it does not resolve plume structure. Better optical analogs of non-spherical volcanic ash, and coincident suborbital data to validate the satellite retrieval results, are the factors most important for further advancing the remote sensing of volcanic ash plumes from space.
The Multi-angle Imaging SpectroRadiometer (MISR) instrument has been operational on the National Aeronautics and Space Administration (NASA) Earth Observing System (EOS) Terra satellite since early 2000, creating an extensive data set of global Earth observations. Here we introduce the latest version of the MISR aerosol products. The level 2 (swath) product, which is reported on a 4.4 km spatial grid, is designated as version 23 (V23) and contains retrieved aerosol optical depth (AOD) and aerosol particle property information derived from MISR's multiangle observations over both land and water. The changes from the previous version of the algorithm (V22) have significant impacts on the data product and its interpretation. The V23 data set is created from two separate retrieval algorithms that are applied over dark water and land surfaces, respectively. Besides increasing the horizontal resolution to 4.4 km compared with the coarser 17.6 m resolution in V22 and streamlining the format and content, the V23 product has added geolocation information, pixel-level uncertainty estimates, and improved cloud screening. MISR data can be obtained from the NASA Langley Research Center Atmospheric Science Data Center at https://eosweb.larc.nasa. gov/project/misr/misr_table (last access: 11 October 2019). The version number for the V23 level 2 aerosol product is F13_0023. The level 3 (gridded) aerosol product is still reported at 0.5 • ×0.5 • spatial resolution with results aggregated from the higher-resolution level 2 data. The format and content at level 3 have also been updated to reflect the changes made at level 2. The level 3 product associated with the V23 level 2 product version is designated as F15_0032. Both the level 2 and level 3 products are now provided in NetCDF format.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.