Tumor immunoscoring is rapidly becoming a universal parameter of prognosis, and T-cells isolated from tumor masses are used for ex vivo amplification and readministration to patients to facilitate an antitumor immune response. We recently exploited the cancer genome atlas (TCGA) RNASeq data to assess T-cell receptor (TcR) expression and, in particular, discovered strong correlations between major histocompatibility class II (MHCII) and TcR-α constant region expression levels. In this article, we describe the results of searching TCGA exome files for TcR-α V-regions, followed by searching the V-region datasets for TcR-α-J regions. Both primary and metastatic breast cancer sample files contained recombined TcR-α V–J regions, ranging in read counts from 16–39, at the higher level. Among four such V–J rearrangements, three were productive rearrangements. Rearranged TcR-α V–J regions were also detected in TCGA–bladder cancer, –lung cancer, and –ovarian cancer datasets, as well as exome files representing bladder cancer, in Moffitt Cancer Center patients. These results suggest that a direct search of commonly available, conventional exome files for rearranged TcR segments could play a role in more sophisticated immunoscoring or in identifying particular T-cell clones and TcRs directed against tumor antigens.
A continuing conundrum of cancer biology is the dichotomous function of transcription factors that regulate both proliferation and apoptosis, seemingly opposite results. Previous results have indicated that regulated entry into the S-phase of the cell cycle can be anti-apoptotic. Indeed, tumor suppressor genes can be amplified in tumors and certain, slow growing cancers can represent a relatively poor prognosis, both phenomena likely related to reduced cancer cell apoptosis, in turn due to reduced, unproductive entry into S-phase. In this report, we demonstrate that the Oct-1 transcription factor, commonly considered pro-proliferative, indeed facilitates IFN-γ induced apoptosis in 5637 bladder carcinoma cells, consistent with the role of the retinoblastoma protein in down-regulating Oct-1 DNA binding activity and in suppressing IFN-γ induced apoptosis. More importantly, despite the commonly appreciated process of IFN-γ induced apoptosis, IFN-γ at low concentrations stimulated bladder cancer cell proliferation, consistent with apoptosis being dependent on an overstimulation of what is otherwise a pro-proliferative pathway. This observation is in turn consistent with a feed forward mechanism of apoptosis, whereby transcription factors activate proliferation-effector genes at relatively low levels, then apoptosis-effector genes when the transcription factors over-accumulate. Finally, Oct-1 mediated apoptosis is inhibited by co-culture with Raji B-cells, raising the question of whether the normal lymph node environment, or other microenvironments with high concentrations of B-cells, is protective against Oct-1 facilitated apoptosis?
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.