Despite best efforts at controlling nanoparticle (NP) surface chemistries, the environment surrounding nanomaterials is always changing and can impart a permanent chemical memory. We present a set of preparation and measurement methods to be used as the foundation for studying the surface chemical memory of engineered NP aggregates. We attempt to bridge the gap between controlled lab studies and real-world NP samples, specifically TiO(2), by using well-characterized and consistently synthesized NPs, controllably producing NP aggregates with precision drop-on-demand inkjet printing for subsequent chemical measurements, monitoring the physical morphology of the NP aggregate depositions with scanning electron microscopy (SEM), acquiring "surface-to-bulk" mass spectra of the NP aggregate surfaces with time-of-flight secondary ion mass spectrometry (ToF-SIMS), and developing a data analysis scheme to interpret chemical signatures more accurately from thousands of data files. We present differences in mass spectral peak ratios for bare TiO(2) NPs compared to NPs mixed separately with natural organic matter (NOM) or pond water. The results suggest that subtle changes in the local environment can alter the surface chemistry of TiO(2) NPs, as monitored by Ti(+)/TiO(+) and Ti(+)/C(3)H(5)(+) peak ratios. The subtle changes in the absolute surface chemistry of NP aggregates vs. that of the subsurface are explored. It is envisioned that the methods developed herein can be adapted for monitoring the surface chemistries of a variety of engineered NPs obtained from diverse natural environments.
Atomic surface structures of nanoparticles are of interest in catalysis and other fields. Aberration-corrected HREM facilitates direct imaging of the surfaces of nanoparticles. A remaining concern of surface imaging arises from beam damage. It is important to identify the intrinsic surface structures and the ones created by electron beam irradiation in TEM. In this study, we performed aberration-corrected HREM and EELS to demonstrate that TiO and bcc type Ti islands form due to intense electron irradiation. The formation of Ti-rich islands is in agreement with previous high temperature annealing experiments on the surfaces of SrTiO3 single crystals.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.