From measurements of Hf-Yb mixtures, we have found that the correction of isobaric interferences involving accepted Yb isotope ratios and reasonable estimates of mass bias result in a significantly under-corrected 176 Hf, which is proportional to the amount of Yb added. This can be explained by (1) a significant difference in the instrumental mass bias between Hf and Yb, and (2) that the accepted values for isotopic ratios within the Yb and/or Hf systems are incorrect. We have evaluated these possibilities by measuring mixed solutions of Yb and Hf on two MC-ICP-MS instruments and undertaking a series of REE fractionation experiments using a thermal ionisation mass spectrometer (TIMS). Our results indicate that the presently accepted abundances of the Yb isotopes are not appropriate. We present new values for Yb isotopic abundances based on the TIMS and MC-ICP-MS results. Using the newly defined Yb values, we demonstrate that Yb and Hf have similar levels of mass bias in plasma ionisation instruments, and that Hf isotope ratios can be used to correct Yb mass bias before subsequent correction of isobaric interference. A laser ablation comparison of Yb and Hf indicates that similar relationships exist, and can be applied to micro-analytical techniques where chemical separation is not possible.
Siderophores are chelates produced by bacteria as part of a highly specific iron uptake mechanism. They are thought to be important in the bacterial acquisition of iron in seawater and to influence iron biogeochemistry in the ocean. We have identified and quantified two types of siderophores in seawater samples collected from the Atlantic Ocean. These siderophores were identified as hydroxamate siderophores, both ferrioxamine species representative of the more soluble marine siderophores characterized to date. Ferrioxamine G was widely distributed in surface waters throughout the Atlantic Ocean, while ferrioxamine E had a more varied distribution. Total concentrations of the two siderophores were between 3 and 20 pM in the euphotic zone. If these compounds are fully complexed in seawater, they represent approximately 0.2-4.6% of the <0.2 microm iron pool. Our data confirm that siderophore-mediated iron acquisition is important for marine heterotrophic bacteria and indicate that siderophores play an important role in the oceanic biogeochemical cycling of iron.
Summary1. Trace element concentrations in fish earstones ('otoliths') are widely used to discriminate spatially discrete populations or individuals of marine fish, based on a commonly held assumption that physiological influences on otolith composition are minor, and thus variations in otolith elemental chemistry primarily reflect changes in ambient water chemistry. 2. We carried out a long-term (1-year) experiment, serially sampling seawater, blood plasma and otoliths of mature and immature European plaice (Pleuronectes platessa L.) to test relationships between otolith chemistry and environmental and physiological variables. 3. Seasonal variations in otolith elemental composition did not track seawater concentrations, but instead reflected physiological controls on metal transport and biokinetics, which are likely moderated by ambient temperature. The influence of physiological factors on otolith composition was particularly evident in Sr/Ca ratios, the most widely used elemental marker in applied otolith microchemistry studies. Reproduction also triggered specific variations in otolith and blood plasma metal chemistry, especially Zn/Ca ratios in female fish, which could potentially serve as retrospective spawning indicators. 4. The influence of physiology on the trace metal composition of otoliths may explain the success of microchemical stock discrimination in relatively homogenous marine environments, but could complicate alternative uses for trace element compositions in biominerals of higher organisms.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.