[Chemical reaction: See text] We describe efforts to achieve the electroreductive cyclization (ERC) and the electrohydrocyclization (EHC) reactions using catalytic nickel(II) salen as a mediator. While nickel(II) salen proved effective, the analogous cobalt complex as well as nickel(II) cyclam were not. The transformations were achieved in yields ranging from 60 to 94% using either a mercury pool or an environmentally preferable reticulated vitreous carbon (RVC) cathode. These examples represent the first instances wherein a nickel salen complex has been used in this manner. Clear differences between the voltammetric behavior of the ERC and EHC substrates were observed. The bisenoate 14, for example, displays a substantially larger catalytic current. When the structurally modified mediator 31 was used, the electron-transfer pathway shuts down. Instead, the reduced form of 31 behaves as an electrogenerated base, leading to the formation of the intramolecular Michael adduct 23. Presumably, the methyl groups of the modified ligand diminish the ability of the reduced form of the complex to serve as a nucleophile but not as a base. Aldehyde 23 was also characterized as a side product of the nickel(II) salen mediated electroreductive cyclization of 11. Given that it is absent from nonmediated processes, its formation is linked to the presence of the mediator. To account for the results, we favor the existence of a mechanistic continuum involving an equilibrium between nickel(II) salen (15) and two reduced forms, one being the metal-centered species 16, the other being a ligand-centered species 17. We postulate that one form may be more prominently involved with the chemistry than another, depending upon the electronic properties/requirements of the substrate, and suggest that the equilibrium will shift to accommodate the need. Thus, for a hard electrophile like an alkyl halide, the properties of 16 ought to dominate, whereas 17 ought to predominate as the reactive species accounting for the chemistry described herein since it properly matches a soft ligand-centered nucleophile with a soft electron deficient alkene.
SummaryThe electron affinities (EAs) of a training set of 19 metal-salen compounds were calculated using density functional theory. Concurrently, the experimental reduction potentials for the training set were measured using cyclic voltammetry. The EAs and reduction potentials were found to be linearly correlated by metal. The reduction potentials of a test set of 14 different metal-salens were then measured and compared to the predicted reduction potentials based upon the training set correlation. The method was found to work well, with a mean unsigned error of 99 mV for the entire test set. This method could be used to predict the reduction potentials of a variety of metal-salen compounds, an important class of coordination compounds used in synthetic organic electrochemistry as electrocatalysts.
The use of chiral Ni(II)-salen derivatives was examined in mediated electrohydrocyclization (EHC) reactions. Cyclic voltammetry established the existence of a catalytic current. Bulk electrolysis revealed a slight change in the diastereoselectivity of the cyclizations. Density functional theory (DFT) computational studies showed that Ni(II)-salen and Zn(II)-salen were the best metal-salens for electron transfer, while Co(II)-salen and Cu(II)-salen would likely be ineffective for this purpose. Electron transfer was both considerably more thermodynamically and kinetically (whether through an inner or outer sphere pathway) favorable with Ni(II)salen and Zn(II)-salen. Computational data also suggests Ni(II)-salen to be preferred for promoting inner sphere electron transfer, due in part to the ligand-centered reduction of Ni(II)-salen, and thus for affecting stereoselectivity in mediated EHC reactions.
The use of chiral Ni(II)-salen derivatives was examined in mediated electrohydrocyclization reactions. Cyclic voltammetry established the existence of a catalytic current. Bulk electrolysis revealed a slight change in the diastereoselectivity of the cyclizations. Computational studies were conducted that showed that Ni(II) and Zn(II) were the best metals for electron transfer, while the analogous Co(II) and Cu(II) compounds would likely not result in effective electron transfer.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.