Alzheimer's disease (AD) is associated with accumulation of beta-amyloid (Abeta). A major genetic risk factor for sporadic AD is inheritance of the apolipoprotein (apo) E4 allele. ApoE can act as a pathological chaperone of Abeta, promoting its conformational transformation from soluble Abeta into toxic aggregates. We determined if blocking the apoE/Abeta interaction reduces Abeta load in transgenic (Tg) AD mice. The binding site of apoE on Abeta corresponds to residues 12 to 28. To block binding, we synthesized a peptide containing these residues, but substituted valine at position 18 to proline (Abeta12-28P). This changed the peptide's properties, making it non-fibrillogenic and non-toxic. Abeta12-28P competitively blocks binding of full-length Abeta to apoE (IC50 = 36.7 nmol). Furthermore, Abeta12-28P reduces Abeta fibrillogenesis in the presence of apoE, and Abeta/apoE toxicity in cell culture. Abeta12-28P is blood-brain barrier-permeable and in AD Tg mice inhibits Abeta deposition. Tg mice treated with Abeta12-28P for 1 month had a 63.3% reduction in Abeta load in the cortex (P = 0.0043) and a 59.5% (P = 0.0087) reduction in the hippocampus comparing to age-matched control Tg mice. Antibodies against Abeta were not detected in sera of treated mice; therefore the observed therapeutic effect of Abeta12-28P cannot be attributed to an antibody clearance response. Our experiments demonstrate that compounds blocking the interaction between Abeta and its pathological chaperones may be beneficial for treatment of beta-amyloid deposition in AD.
The hyaluronic acid binding region was prepared by clostripain digestion of chondroitin sulfate proteoglycan isolated from the Swarm rat chondrosarcoma, and biotinylated in the presence of associated hyaluronic acid and link protein. After removal of hyaluronic acid by gel filtration in 4 M guanidine HCl, the biotinylated binding region-link protein complex was used as a specific histochemical probe in conjunction with avidin-peroxidase. Its utility was initially evaluated by comparison with Alcian blue staining of the axial region of 2 to 5 day chick embryos, where staining was seen in the dorsolateral area between the neural tube and the ectoderm, in the perichordal mesenchyme, and in developing limb buds. Light and electron microscopic studies of early postnatal rat cerebellum indicate that hyaluronic acid is primarily localized in the extracellular space of immature brain. Staining specificity was demonstrated by the ability of hyaluronic acid oligosaccharides of appropriate size to block the staining reaction, and by the absence of staining after treatment of tissue sections with protease-free Streptomyces hyaluronidase, which degrades only this glycosaminoglycan.
Retinoic acid (RA) has been shown to retard the differentiation of epidermal keratinocytes by several morphologic and biochemical criteria. In this study, the epidermal content and localization of hyaluronate (HA), as well as its synthesis and disappearance in human skin organ culture, were characterized to test the idea that some of the RA influences on epidermal differentiation are associated with keratinocyte HA metabolism. RA stimulated the incorporation of 3H-glucosamine into HA by up to 60% at concentrations between 50 nM and 5 microM, while pulse-chase experiments revealed little change in its disappearance rate from epidermis. After 5 d in culture, the chemically quantified HA was more than doubled in the treated epidermis. The accumulation of HA was substantiated by light and electron microscopy with a specific probe prepared from the HA binding region of cartilage proteoglycan. The staining was particularly enhanced between the upper spinous cell layers, where the terminal differentiation into corneocytes normally takes place. A patchy, discontinuous staining was also seen in stratum granulosum and corneum layers, which are not stained at all in control cultures. The present study demonstrates that RA leads to an accumulation of HA in the superficial layers of epidermis by stimulating its synthesis in keratinocytes. This may account for the delay in terminal differentiation, and the weakened cohesion of the keratinocytes previously observed both in vivo and vitro.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.