The aim of this paper is to explain critical features of the human primary generalized epilepsies by investigating the dynamical bifurcations of a nonlinear model of the brain's mean field dynamics. The model treats the cortex as a medium for the propagation of waves of electrical activity, incorporating key physiological processes such as propagation delays, membrane physiology, and corticothalamic feedback. Previous analyses have demonstrated its descriptive validity in a wide range of healthy states and yielded specific predictions with regards to seizure phenomena. We show that mapping the structure of the nonlinear bifurcation set predicts a number of crucial dynamic processes, including the onset of periodic and chaotic dynamics as well as multistability. Quantitative study of electrophysiological data supports the validity of these predictions. Hence, we argue that the core electrophysiological and cognitive differences between tonic-clonic and absence seizures are predicted and interrelated by the global bifurcation diagram of the model's dynamics. The present study is the first to present a unifying explanation of these generalized seizures using the bifurcation analysis of a dynamical model of the brain.
The human alpha (8 -12 Hz) rhythm is one of the most prominent, robust, and widely studied attributes of ongoing cortical activity. Contrary to the prevalent notion that it simply "waxes and wanes," spontaneous alpha activity bursts erratically between two distinct modes of activity. We now establish a mechanism for this multistable phenomenon in resting-state cortical recordings by characterizing the complex dynamics of a biophysical model of macroscopic corticothalamic activity. This is achieved by studying the predicted activity of cortical and thalamic neuronal populations in this model as a function of its dynamic stability and the role of nonspecific synaptic noise. We hence find that fluctuating noisy inputs into thalamic neurons elicit spontaneous bursts between low-and high-amplitude alpha oscillations when the system is near a particular type of dynamical instability, namely a subcritical Hopf bifurcation. When the postsynaptic potentials associated with these noisy inputs are modulated by cortical feedback, the SD of power within each of these modes scale in proportion to their mean, showing remarkable concordance with empirical data. Our state-dependent corticothalamic model hence exhibits multistability and scale-invariant fluctuations-key features of resting-state cortical activity and indeed, of human perception, cognition, and behavior-thus providing a unified account of these apparently divergent phenomena.
Multistability and scale-invariant fluctuations occur in a wide variety of biological organisms from bacteria to humans as well as financial, chemical and complex physical systems. Multistability refers to noise driven switches between multiple weakly stable states. Scale-invariant fluctuations arise when there is an approximately constant ratio between the mean and standard deviation of a system's fluctuations. Both are an important property of human perception, movement, decision making and computation and they occur together in the human alpha rhythm, imparting it with complex dynamical behavior. Here, we elucidate their fundamental dynamical mechanisms in a canonical model of nonlinear bifurcations under stochastic fluctuations. We find that the co-occurrence of multistability and scale-invariant fluctuations mandates two important dynamical properties: Multistability arises in the presence of a subcritical Hopf bifurcation, which generates co-existing attractors, whilst the introduction of multiplicative (state-dependent) noise ensures that as the system jumps between these attractors, fluctuations remain in constant proportion to their mean and their temporal statistics become long-tailed. The simple algebraic construction of this model affords a systematic analysis of the contribution of stochastic and nonlinear processes to cortical rhythms, complementing a recently proposed biophysical model. Similar dynamics also occur in a kinetic model of gene regulation, suggesting universality across a broad class of biological phenomena.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.