The well-documented effectiveness of palpation as a diagnostic technique for detecting cancer and other diseases has provided motivation for developing imaging techniques for noninvasively evaluating the mechanical properties of tissue. A recently described approach for elasticity imaging, using propagating acoustic shear waves and phase-contrast MRI, has been called magnetic resonance elastography (MRE). The purpose of this work was to conduct preliminary studies to define methods for using MRE as a tool for addressing the paucity of quantitative tissue mechanical property data in the literature. Fresh animal liver and kidney tissue specimens were evaluated with MRE at multiple shear wave frequencies. The influence of specimen temperature and orientation on measurements of stiffness was studied in skeletal muscle. The results demonstrated that all of the materials tested (liver, kidney, muscle and tissue-simulating gel) exhibit systematic dependence of shear stiffness on shear rate. These data are consistent with a viscoelastic model of tissue mechanical properties, allowing calculation of two independent tissue properties from multiple-frequency MRE data: shear modulus and shear viscosity. The shear stiffness of tissue can be substantially affected by specimen temperature. The results also demonstrated evidence of shear anisotropy in skeletal muscle but not liver tissue. The measured shear stiffness in skeletal muscle was found to depend on both the direction of propagation and polarization of the shear waves.
The bulk of aqueous humor passing through the conventional outflow pathway must cross the inner wall endothelium of Schlemm’s canal (SC), likely through micron-sized transendothelial pores. SC pore density is reduced in glaucoma, possibly contributing to obstructed aqueous humor outflow and elevated intraocular pressure (IOP). Little is known about the mechanisms of pore formation; however, pores are often observed near dome-like cellular outpouchings known as giant vacuoles (GVs) where significant biomechanical strain acts on SC cells. We hypothesize that biomechanical strain triggers pore formation in SC cells. To test this hypothesis, primary human SC cells were isolated from three non-glaucomatous donors (aged 34, 44 and 68), and seeded on collagen-coated elastic membranes held within a membrane stretching device. Membranes were then exposed to 0%, 10% or 20% equibiaxial strain, and the cells were aldehyde-fixed 5 minutes after the onset of strain. Each membrane contained 3–4 separate monolayers of SC cells as replicates (N = 34 total monolayers), and pores were assessed by scanning electron microscopy in 12 randomly selected regions (~65,000 μm2 per monolayer). Pores were identified and counted by four independent masked observers. Pore density increased with strain in all three cell lines (p < 0.010), increasing from 87±37 pores/mm2 at 0% strain to 342±71 at 10% strain; two of the three cell lines showed no additional increase in pore density beyond 10% strain. Transcellular “I-pores” and paracellular “B-pores” both increased with strain (p < 0.038), however B-pores represented the majority (76%) of pores. Pore diameter, in contrast, appeared unaffected by strain (p = 0.25), having a mean diameter of 0.40 μm for I-pores (N = 79 pores) and 0.67 μm for B-pores (N = 350 pores). Pore formation appears to be a mechanosensitive process that is triggered by biomechanical strain, suggesting that SC cells have the ability to modulate local pore density and filtration characteristics of the inner wall endothelium based on local biomechanical cues. The molecular mechanisms of pore formation and how they become altered in glaucoma may be studied in vitro using stretched SC cells.
SUMMARYNew and enhanced nuclear fuels are a key enabler for new and improved reactor technologies. For example, the goals of the next generation nuclear plant (NGNP) will not be met without irradiations successfully demonstrating the safety and reliability of new fuels. Likewise, fuel reliability has become paramount in ensuring the competitiveness of nuclear power plants. Recently, the Office of Nuclear Energy in the Department of Energy (DOE-NE) launched a new direction in fuel research and development that emphasizes an approach relying on first principle models to develop optimized fuel designs that offer significant improvements over current fuels. To facilitate this approach, high fidelity, real-time, data are essential for characterizing the performance of new fuels during irradiation testing. A three-year strategic research program has been initiated for developing the required test vehicles with sensors of unprecedented accuracy and resolution for obtaining the data needed to characterize three-dimensional changes in fuel microstructure during irradiation testing. When implemented, this strategy will yield test capsule designs that are instrumented with new sensor technologies for irradiations at facilities primarily relied upon by the Fuel Cycle Research and Development (FCR&D) program, the Advanced Test Reactor (ATR) and the High Flux Isotope Reactor (HFIR). Prior laboratory testing, and as needed, irradiation testing of sensors in these capsules will have been completed to give sufficient confidence that the irradiation tests will yield the required data.From the onset of this instrumentation development effort, it was recognized that obtaining these sensors must draw upon the expertise of a wide-range of organizations not currently supporting nuclear fuels research. Hence, a draft version of this document was developed to provide necessary background information related to fuel irradiation testing, desired parameters for detection, and an overview of currently available in-pile instrumentation. Then, a workshop was held in which U.S. and foreign experts from fuels, irradiation, and instrumentation fields participated. Prior to this workshop, copies of a draft version of this document were distributed to participants to stimulate expert interactions at this meeting. During the workshop, candidate sensor technologies identified in this document were discussed and ranked by the experts using agreed upon criteria. The final version of this document describes the consensus reached during the workshop with respect to recommendations for the path forward for accomplishing the goals of this research program.Based on the activities completed to develop this strategic plan, it is recommended that the FCR&D instrumentation development program be initiated as a three year program that includes the following three tasks:• Ultrasonics-Based Evaluations -In this task, laboratory evaluations and necessary irradiations will be completed to demonstrate the viability of this technology for in-pile applications. Specif...
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.