Neurofibromatosis 2 (NF2) is a dominantly inherited disorder characterized by the occurrence of bilateral vestibular schwannomas and other central nervous system tumors including multiple meningiomas. Genetic linkage studies and investigations of both sporadic and familial tumors suggest that NF2 is caused by inactivation of a tumor suppressor gene in chromosome 22q12. We have identified a candidate gene for the NF2 tumor suppressor that has suffered nonoverlapping deletions in DNA from two independent NF2 families and alterations in meningiomas from two unrelated NF2 patients. The candidate gene encodes a 587 amino acid protein with striking similarity to several members of a family of proteins proposed to link cytoskeletal components with proteins in the cell membrane. The NF2 gene may therefore constitute a novel class of tumor suppressor gene.
Von Hippel-Lindau disease (VHL) is an autosomal dominant disorder with inherited susceptibility to various forms of cancer, including hemangioblastomas of the central nervous system, phaeochromocytomas, pancreatic malignancies, and renal cell carcinomas. Renal cell carcinomas constitute a particularly frequent cause of death in this disorder, occurring as bilateral and multifocal tumours, and presenting at an earlier age than in sporadic, non-familial cases of this tumour type. We report here that the VHL gene is linked to the locus encoding the human homologoue of the RAF1 oncogene, which maps to chromosome 3p25 (ref. 4). Crossovers with the VHL locus suggest that the defect responsible for the VHL phenotype is not a mutation in the RAF1 gene itself. An alternative or prior event to oncogene activation in tumour formation may be the inactivation of a putative 'tumour suppressor' which can be associated with both the inherited and sporadic forms of the cancer. Sporadic renal cell carcinomas have previously been associated with the loss of regions on chromosome 3p (refs 5, 6). Consequently, sporadic and VHL-associated forms of renal cell carcinoma might both result from alterations causing loss of function of the same 'tumour suppressor' gene on this chromosome.
Modifications to exon amplification have been instituted that increase its speed, efficiency and reliability. Exons were isolated from target human or mouse genomic DNA sources ranging from 30 kilobases (kb) to 3 megabases (Mb) in complexity. The efficiency was dependent upon the amount of input DNA, and ranged from isolation of an exon for every 20 kb to an exon for every 80 kb of target genomic DNA. In these studies, several novel genes and a smaller number of genes isolated previously that reside on human chromosome 9 have been identified. These results indicate that exon amplification is presently adaptable to large scale isolation of exons from complex sources of genomic DNA.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.