Bax is required for the apoptotic death of sympathetic neurons deprived of nerve growth factor (NGF). After NGF withdrawal, Bax translocates from the cytoplasm to the mitochondria of these cells and induces release of the proapoptotic protein cytochrome c. Here, we report that withdrawing NGF from mouse sympathetic neurons caused an increase of mitochondria-derived reactive oxygen species (ROS). Suppressing these ROS inhibited apoptosis. Bax deletion blocked death and prevented the ROS burst. Inducing a pro-oxidant state similar to that in NGF-deprived, wild-type cells caused cytochrome c release even in neurons lacking Bax. A similar ROS burst in cerebellar granule neurons undergoing apoptosis was also blocked by Bax deletion. These findings indicate that Bax lies upstream from increased ROS in NGF-deprived neurons and suggest that the Bax-induced ROS burst is both necessary and sufficient for cytochrome c redistribution in these cells.
Phrenic long-term facilitation (pLTF) following acute intermittent hypoxia (AIH) is a form of spinal, serotonin-dependent synaptic plasticity that requires reactive oxygen species (ROS) formation. We tested the hypothesis that spinal NADPH oxidase activity is a necessary source of ROS for pLTF. Sixty minutes post-AIH (three 5-min episodes of 11% O 2 , 5 min intervals), integrated phrenic and hypoglossal (XII) nerve burst amplitudes were increased from baseline, indicative of phrenic and XII LTF. Intrathecal injections (∼C 4 ) of apocynin or diphenyleneiodonium chloride (DPI), two structurally and functionally distinct inhibitors of the NADPH oxidase complex, attenuated phrenic, but not XII, LTF. Immunoblots from soluble (cytosolic) and particulate (membrane) fractions of ventral C 4 spinal segments revealed predominantly membrane localization of the NADPH oxidase catalytic subunit, gp91 phox , whereas membrane and cytosolic expression were both observed for the regulatory subunits, p47 phox and RAC1. Immunohistochemical analysis of fixed tissues revealed these same subunits in presumptive phrenic motoneurons of the C 4 ventral horn, but not in neighbouring astrocytes or microglia. Collectively, these data demonstrate that NADPH oxidase subunits localized within presumptive phrenic motoneurons are a major source of ROS necessary for AIH-induced pLTF. Thus, NADPH oxidase activity is a key regulator of spinal synaptic plasticity, and may be a useful pharmaceutical target in developing therapeutic strategies for respiratory insufficiency in patients with, for example, cervical spinal injury.
Lipopolysaccharide (LPS) induces inflammatory responses, including microglial activation in the central nervous system. Since LPS impairs certain forms of hippocampal and spinal neuroplasticity, we hypothesized that LPS would impair phrenic long-term facilitation (pLTF) following acute intermittent hypoxia (AIH) in outbred Sprague-Dawley (SD) and inbred Lewis (L) rats.. Approximately three hours following a single LPS injection (i.p.), the phrenic response during hypoxic episodes is reduced in both rat strains versus vehicle treated, control rats (SD: 84±7% vs. 128±14% baseline for control, p<0.05; L: 62±10% vs. 90±9% baseline for control, p<0.05). At 60 min post-AIH, pLTF is also diminished by LPS in both strains: (SD: 22±5% vs. 73.5±14% baseline for control, p<0.05; L: 18±15% vs. 56±8% baseline for control, p<0.05). LPS alone does not affect phrenic burst frequency in either rat strain, suggesting that acute LPS injection has minimal effect on brainstem respiratory rhythm generation. Thus, systemic LPS injections and (presumptive) inflammation impair pLTF, a form of spinal neuroplasticity in respiratory motor control. These results suggest that ongoing infection or inflammation must be carefully considered in studies of respiratory plasticity, or during attempts to harness spinal plasticity as a therapeutic tool in the treatment of respiratory insufficiency, such as spinal cord injury.
NMDA-mediated calcium entry and reactive oxygen species (ROS) production are well-recognized perpetrators of ischemic neuronal damage. The current studies show that these events lead to the release of the protein hydrolase, cathepsin B, from lysosomes 2 h following 5-min oxygen-glucose deprivation in the rat hippocampal slice. This release reflects a lysosomal membrane permeabilization (LMP) and was measured as the appearance of diffuse immunolabeled cathepsin B in the cytosol of CA1 pyramidal neurons. Necrotic neuronal damage begins after the release of cathepsins and is prevented by inhibitors of either cathepsin B or D indicating that the release of cathepsins is an important mediator of severe damage. There was an increase in superoxide levels, measured by dihydroethidium fluorescence, at the same time as LMP and reducing ROS levels with antioxidants, Trolox or Ntert-butyl-a-phenyl nitrone, blocked LMP. Both LMP and ROS production were blocked by an NMDA channel blocker (MK-801) and by inhibitors of mitogen-activated protein kinase kinase (U0126), calcium-dependent/independent phospholipases A2 (methyl arachidonyl fluorophosphonate) but not calcium-independent phospholipases A2 (bromoenol lactone) and cyclooxygenase-2 (NS398). A cell-permeant specific inhibitor of calpain (PD150606) prevented LMP, but not ROS production. It is concluded that LMP results in part from calcium-initiated and extracellular signal-regulated kinase-initiated arachidonic acid metabolism, which produces free radicals; it also requires the action of calpain.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.