Information retrieval (IR) researchers commonly use three tests of statistical significance: the Student's paired t-test, the Wilcoxon signed rank test, and the sign test. Other researchers have previously proposed using both the bootstrap and Fisher's randomization (permutation) test as nonparametric significance tests for IR but these tests have seen little use. For each of these five tests, we took the ad-hoc retrieval runs submitted to TRECs 3 and 5-8, and for each pair of runs, we measured the statistical significance of the difference in their mean average precision. We discovered that there is little practical difference between the randomization, bootstrap, and t tests. Both the Wilcoxon and sign test have a poor ability to detect significance and have the potential to lead to false detections of significance. The Wilcoxon and sign tests are simplified variants of the randomization test and their use should be discontinued for measuring the significance of a difference between means.
For the TREC 2004 Novelty track, UMass participated in all four tasks. Although finding relevant sentences was harder this year than last, we continue to show marked improvements over the baseline of calling all sentences relevant, with a variant of tfidf being the most successful approach. We achieve 5-9% improvements over the baseline in locating novel sentences, primarily by looking at the similarity of a sentence to earlier sentences and focusing on named entities.For the High Accuracy Retrieval from Documents (HARD) track, we investigated the use of clarification forms, fixed-and variable-length passage retrieval, and the use of metadata. Clarification form results indicate that passage level feedback can provide improvements comparable to user supplied related-text for document evaluation and outperforms related-text for passage evaluation. Document retrieval methods without a query expansion component show the most gains from related-text. We also found that displaying the top passages for feedback outperformed displaying centroid passages. Named entity feedback resulted in mixed performance. Our primary findings for passage retrieval are that document retrieval methods performed better than passage retrieval methods on the passage evaluation metric of binary preference at 12,000 characters, and that clarification forms improved passage retrieval for every retrieval method explored. We found no benefit to using variable-length passages over fixed-length passages for this corpus. Our use of geography and genre metadata resulted in no significant changes in retrieval performance.
The Topic Detection and Tracking (TDT) research program has been running for five years. starting with a pilot study and including yearly open and competitive evaluations since then. In this chapter we define the basic concepts of TDT and provide historical context for the concepts. [n describing the various TDT evaluation tasks and workshops. we provide an overview of the technical approaches that have been used and that have succeeded.
New Event Detection is a challenging task that still offers scope for great improvement after years of effort. In this paper we show how performance on New Event Detection (NED) can be improved by the use of text classification techniques as well as by using named entities in a new way. We explore modifications to the document representation in a vector space-based NED system. We also show that addressing named entities preferentially is useful only in certain situations. A combination of all the above results in a multi-stage NED system that performs much better than baseline single-stage NED systems.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.