The propagation of concepts in a population of agents is a form of influence spread, which can be modelled as a cascade from a set of initially activated individuals. The study of such influence cascades, in particular the identification of influential individuals, has a wide range of applications including epidemic control, viral marketing and the study of social norms. In real-world environments there may be many concepts spreading and interacting. These interactions can affect the spread of a given concept, either boosting it and allowing it to spread further, or inhibiting it and limiting its capability to spread. Previous work does not consider how the interactions between concepts affect concept spread. Taking concept interactions into consideration allows for indirect concept manipulation, meaning that we can affect concepts we are not able to directly control. In this paper, we consider the problem of indirect concept manipulation, and propose heuristics for indirectly boosting or inhibiting concept spread in environments where concepts interact. We define a framework that allows for the interactions between any number of concepts to be represented, and present a heuristic that aims to identify important influence paths for a given target concept in order to manipulate its spread. We compare the performance of this heuristic, called maximum probable gain, against established heuristics for manipulating influence spread.
Abstract. In large populations of autonomous individuals, the propagation of ideas, strategies or infections is determined by the composite effect of interactions between individuals. The propagation of concepts in a population is a form of influence spread and can be modelled as a cascade from a set of initial individuals through the population. Understanding influence spread and information cascades has many applications, from informing epidemic control and viral marketing strategies to understanding the emergence of conventions in multi-agent systems. Existing work on influence spread has mainly considered single concepts, or small numbers of blocking (exclusive) concepts. In this paper we focus on non-blocking cascades, and propose a new model for characterising concept interaction in an independent cascade. Furthermore, we propose two heuristics, Concept Aware Single Discount and Expected Infected, for identifying the individuals that will maximise the spread of a particular concept, and show that in the non-blocking multi-concept setting our heuristics out-perform existing methods.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.