Beta-adrenergic receptor (betaAR) stimulation increases cytosolic Ca(2+) to physiologically augment cardiac contraction, whereas excessive betaAR activation causes adverse cardiac remodeling, including myocardial hypertrophy, dilation and dysfunction, in individuals with myocardial infarction. The Ca(2+)-calmodulin-dependent protein kinase II (CaMKII) is a recently identified downstream element of the betaAR-initiated signaling cascade that is linked to pathological myocardial remodeling and to regulation of key proteins involved in cardiac excitation-contraction coupling. We developed a genetic mouse model of cardiac CaMKII inhibition to test the role of CaMKII in betaAR signaling in vivo. Here we show CaMKII inhibition substantially prevented maladaptive remodeling from excessive betaAR stimulation and myocardial infarction, and induced balanced changes in excitation-contraction coupling that preserved baseline and betaAR-stimulated physiological increases in cardiac function. These findings mark CaMKII as a determinant of clinically important heart disease phenotypes, and suggest CaMKII inhibition can be a highly selective approach for targeting adverse myocardial remodeling linked to betaAR signaling.
Apolipoprotein E (apoE) deficiency causes severe hyperlipidemia and atherosclerosis in humans and in gene-targeted mice. Although the majority of apoE in plasma is of hepatic origin, apoE is synthesized by a variety of cell types, including macrophages. Because macrophages derive from hematopoietic cells, bone marrow transplantation was used to examine the potential of apoE synthesized by bone marrow-derived cells to correct the hyperlipidemia and atherosclerosis caused by apoE deficiency. After transplantation of bone marrow from mice with the normal apoE gene into apoE-deficient mice, apoE was detected in serum and promoted clearance of lipoproteins and normalization of serum cholesterol levels. ApoE-deficient mice given transplants of normal bone marrow showed virtually complete protection from diet-induced atherosclerosis.
Metastatic pattern in neuroblastoma differs with age and correlates with tumor biological features and EFS. These correlations could reflect changes in host or tumor biological features with age resulting in differences in metastatic capacity or tumor affinity for specific sites.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.