Communications t o the Editor 3221EXAFS results also demonstrate that oxidative addition to form a six-coordinate Pt(1V)-DNA adduct with the retention of both ammines and chlorides does not occur. From the EXAFS spectra, no appreciable differences were detected at this stage in the platinum coordination spheres of the complexes formed by cis-and trans-DDP with DNA. This result, however, should not be taken to indicate that subtle differences do not exist.In conclusion, this work provides, for the first time, strong structural evidence against the possibility of distinct metalmetal bonding in the complexes of both cis-and trans-DDP with calf thymus DNA. The data are consistent with the presence of four Pt-N (or -0) bonds in a presumably square-planar Pt(I1) coordination sphere. Further stereochemical details from EXAFS study must await determination of interatomic distances other than those in the coordination shell using spectra of higher signal-to-noise ratio (in progress).(1) (a)
Several laboratories, including our own have reported the synthesis and activity of certain low relative molecular mass inhibitors of mammalian serine proteases, especially human leukocyte elastase (HLE, EC 3.4.21.37), an enzyme whose degradative activity on lung elastin has been implicated as a major causative factor in the induction of pulmonary emphysema, and which is present in the azurophil granules of human polymorphonuclear leukocytes (PMN). Normally, these granules fuse with phagosomes containing engulfed foreign material (such as bacteria), and HLE, in combination with other lysosomal enzymes, catabolizes the particles. Under certain pathological conditions, however, PMN become attached to host protein (elastin fibres, basement membrane, connective tissue, immune complexes), and in response to this adherence, the granules may fuse with the PMN outer membrane and release their contents, including HLE, directly onto the tissue. Besides emphysema, HLE may also contribute to the pathogenesis of disease states such as adult respiratory distress syndrome, and its potential involvement in rheumatoid arthritis makes HLE inhibitors of considerable interest. It is known that cephalosporin antibiotics (for example, cephalothin (compound I, Table 2)) are acylating inhibitors of bacterial serine proteases which help synthesize the cell wall by performing a transpeptidation reaction on a peptidyl substrate bearing a D-Ala-D-Ala terminus. We now report that neutral cephalosporins (that is, compounds not bearing a free carboxyl at position C-4) can be modified to become potent time-dependent inhibitors of HLE.
The continuing discovery and development of beta-lactams as antibiotics has had an unparalleled impact on the overall health and well-being of society. Recently, appropriately substituted cephalosporins were shown to be potent inhibitors of elastase, suggesting a novel therapeutic role for the beta-lactams in the control of emphysema and other degenerative diseases. We have now solved and partially refined at atomic resolution the structure of a complex of porcine pancreatic elastase with the time-dependent irreversible inhibitor 3-acetoxymethyl-7-alpha-chloro-3-cephem-4-carboxylate-1,1-dioxide tert-butyl ester (I), the most potent of the beta-lactam elastase inhibitors yet reported. (Porcine pancreatic elastase is a close relative of the desired drug target, human polymorphonuclear leukocyte elastase.) A mechanism of action is presented, based on the structure and on biochemical evidence (T.-Y.L. et al., in preparation), which clarifies the operational similarities and differences between beta-lactam elastase inhibitors and antibiotics. Features of the reaction include the expulsion of a leaving group at the cephalosporin 3' position and the formation of two covalent bonds with the active site of porcine pancreatic elastase at residues Ser 195 and His 57.
The cephalosporin derivatives L 658758 [1-[[3-(acetoxymethyl)-7 alpha-methoxy-8-oxo-5-thia-1-azabicyclo [4.2.0]oct-2-en-2-yl]carbonyl]proline S,S-dioxide] and L 659286 [1-[[7 alpha-methoxy-8-oxo-3-[[(1,2,5,6-tetrahydro-2-methyl-5,6-dioxo- 1,2,4-triazin-3-yl)thio]methyl]-5-thia-1-aza-(6R)-bicyclo[4.2.0]-o ct-2-en-2-yl]carbonyl]pyrrolidine S,S-dioxide] are mechanism based inhibitors of human leukocyte elastase (HLE). The mechanism involves initial formation of a Michaelis complex followed by acylation of the active site serine. The group on the 3'-methylene is liberated during the course of these reactions, followed by partitioning of an intermediate between hydrolysis to regenerate active enzyme and further modification to produce a stable HLE-inhibitor complex. The partition ratio of 2.0 obtained for the reaction with L 658758 approaches that of an optimal inhibitor. These compounds are functionally irreversible inhibitors as the recovery of activity after inactivation is slow. The half-lives at 37 degrees C of the L 658758 and L 659286 derived HLE-I complexes were 9 and 6.5 h, respectively. The complexes produced by both inhibitors are similar chemically since the thermodynamic parameters for activation to regenerate active enzyme are essentially identical. The free energy of activation for this process is dominated primarily by the enthalpy term. The stability of the final complexes likely arises from Michael addition on the active site histidine to the 3'-methylene.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.