Objective Preclinical evidence indicates that gene transfer to the dorsal root ganglion (DRG) using replication defective herpes simplex virus (HSV)-based vectors can reduce pain-related behavior in animal models of pain. This clinical trial was carried out to assess the safety and explore the potential efficacy of this approach in humans. Methods We conducted a multicenter, dose-escalation, Phase I clinical trial of NP2, a replication defective HSV-based vector expressing human preproenkephalin (PENK) in subjects with intractable focal pain caused by cancer. NP2 was injected intradermally into the dermatome(s) corresponding to the radicular distribution of pain. The primary outcome was safety. As secondary measures, efficacy of pain relief was assessed using a numeric rating scale (NRS), the Short Form McGill Pain Questionnaire (SF-MPQ) and concurrent opiate usage. Results Ten subjects with moderate to severe intractable pain despite treatment with more than 200 mg/day of morphine (or equivalent) were enrolled into the study. Treatment was well tolerated with no study agent-related serious adverse events (SAE) observed at any point in the study. Subjects receiving the low dose of NP2 reported no substantive change in pain. Subjects in the middle and high dose cohorts reported pain relief as assessed by NRS and SF-MPQ. Interpretation Treatment of intractable pain with NP2 was well tolerated. There were no placebo controls in this relatively small study, but the dose-responsive analgesic effects suggest that NP2 may be effective in reducing pain and warrants further clinical investigation.
Erectile dysfunction (ED) is frequently associated with injury to the cavernous nerve sustained during pelvic surgery. Functional recovery from cavernous nerve injury is generally incomplete and occurs over an extended time frame. We employed a therapeutic gene transfer approach with herpes simplex virus (HSV) vector expressing glial cell line-derived neurotrophic factor (GDNF). Rat cavernous nerve was injured bilaterally using a clamp and dry ice. For HSV-treated groups, 20 ml of purified vector stock was administered directly to and around the damaged nerve. Delivery of an HSV vector expressing both green fluorescent protein (GFP) and lacZ (HSV-LacZ) was used as a control. Intracavernous pressure along with systemic arterial pressure (ICP/AP) was measured 2 and 4 weeks after the nerve injury. Fluorogold (FG) was injected into the penile crus 7 days before killing to assess nerve survival. Approximately 60% of major pelvic ganglion (MPG) cells were GFP positive after viral administration. At 4 weeks after nerve injury, rats treated with HSV-GDNF exhibited significant recovery of ICP/AP compared with control vector or untreated groups. The HSV-GDNF group also yielded more FG-positive MPG cells than the control vector group. HSV vector-mediated delivery of GDNF presents a viable approach for the treatment of ED following cavernous nerve injury.
To investigate the neuroprotective effects of erythropoietin (EPO) in a rodent model of Parkinson disease, we inoculated a nonreplicating herpes simplex virus-based vector expressing EPO (vector DHEPO) into the striatum of mice 1 week prior to, or 2 weeks after, the start of continual administration of 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) (4 mg/kg intraperitoneally, 5 of 7 days) for 6 weeks. Inoculation with DHEPO prior to MPTP intoxication preserved behavioral function measured by pellet retrieval and the histological markers of tyrosine hydroxylase-immunoreactive (TH-IR) neuronal cell bodies in the substantia nigra (SN) and TH-IR and dopamine transporter-immunoreactive (DAT-IR) terminals in striatum. Inoculation of DHEPO 2 weeks into a 6-week course of MPTP resulted in improvement of behavioral function and restoration of TH-IR cells in SN and TH- and DAT-IR in the striatum. The effects of vector-produced EPO were similar in magnitude to the effects of vector-mediated expression of glial-derived neurotrophic factor in the same model. These results demonstrate that vector-mediated EPO production may be used to reverse dopaminergic neurodegeneration in the face of continued toxic insult.
Herpes simplex virus type 1 (HSV-1) is a promising vector for gene therapy applications, particularly at peripheral nerves, the natural site of virus latency. Many gene vectors require large particle numbers for even early-phase clinical trials, emphasizing the need for high-yield, scalable manufacturing processes that result in virus preparations that are nearly free of cellular DNA and protein contaminants. HSV-1 is an enveloped virus that requires the development of gentle purification methods. Ideally, such methods should avoid centrifugation and may employ selective purification processes that rely on the recognition of a unique envelope surface chemistry. Here we describe a novel method that fulfills these criteria. An immobilized metal affinity chromatography (IMAC) method was developed for the selective purification of vectors engineered to display a high-affinity binding peptide. Feasibility studies involving various transition metal ions (Cu 2؉ , Zn 2؉ , Ni 2؉ , and Co 2؉ ) showed that cobalt had the most desirable features, which include a low level of interaction with either the normal virus envelope or contaminating DNA and proteins. The introduction of a cobalt-specific recognition element into the virus envelope may provide a suitable target for cobalt-dependent purification. To test this possibility, we engineered a peptide with affinity for immobilized cobalt in frame in the heparan sulfate binding domain of HSV-1 glycoprotein B, which is known to be exposed on the surface of the virion particle and recombined into the viral genome. By optimizing the IMAC loading conditions and reducing cobalt ion leakage, we recovered 78% of the tagged HSV-1 recombinant virus, with a >96% reduction in contaminating proteins and DNA.Human herpes simplex virus type 1 (HSV-1) is a neurotropic DNA virus that has been engineered for gene transfer applications, including human gene therapy (6, 18, 31). HSV-1-based vectors exhibit the advantages of a broad host cell range, a large transgene packaging capacity, and potentially lifelong transgene expression in neurons mediated by components of the natural virus latency promoter system (19,20). Recent reports describe extensive efforts to improve the quality of replication-defective, genome-based HSV-1 gene vectors, including reducing vector cytotoxicity (32,33,61,62,77), exploiting viral persistence in neurons for long-term gene therapy (19,20,33,76), and targeting vector tropism by glycoprotein modification (1,7,35). This class of HSV-1 vectors has been exploited for treatment in animal models of pain (5, 23, 24, 27, 29), peripheral neuropathy (12, 13, 21, 22), Parkinson's disease (16,69,79), multiple sclerosis (17,41,42), cystitis (80), and cancer (3,15,26,39,40,44,46,47,58). In addition, characterizations of the optimum conditions for replication-defective vector growth enabled the efficient production of clinically relevant quantities of this vector (51,52,74,75). However, efficient, validated methods for the purification of vectors that are nearly free of contamina...
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.