Enhancing production of the anti-inflammatory cytokine interleukin-10 (IL-10) is a promising strategy to suppress pathogenic inflammation. To identify new mechanisms regulating IL-10 production, we conducted a phenotypic screen for small molecules that enhance IL-10 secretion from activated dendritic cells. Mechanism-of-action studies using a prioritized hit from the screen, BRD6989, identified the Mediator-associated kinase CDK8, and its paralog CDK19, as negative regulators of IL-10 production during innate immune activation. The ability of BRD6989 to upregulate IL-10 is recapitulated by multiple, structurally differentiated CDK8 and CDK19 inhibitors and requires an intact cyclin C–CDK8 complex. Using a highly parallel pathway reporter assay, we identified a role for enhanced AP-1 activity in IL-10 potentiation following CDK8 and CDK19 inhibition, an effect associated with reduced phosphorylation of a negative regulatory site on c-Jun. These findings identify a function for CDK8 and CDK19 in regulating innate immune activation and suggest that these kinases may warrant consideration as therapeutic targets for inflammatory disorders.
The RNF43_p.G659fs mutation occurs frequently in colorectal cancer, but its function remains poorly understood and there are no specific therapies directed against this alteration. In this study, we find that RNF43_p.G659fs promotes cell growth independent of Wnt signaling. We perform a drug repurposing library screen and discover that cells with RNF43_p.G659 mutations are selectively killed by inhibition of PI3K signaling. PI3K/mTOR inhibitors yield promising antitumor activity in RNF43659mut isogenic cell lines and xenograft models, as well as in patient-derived organoids harboring RNF43_p.G659fs mutations. We find that RNF43659mut binds p85 leading to increased PI3K signaling through p85 ubiquitination and degradation. Additionally, RNA-sequencing of RNF43659mut isogenic cells reveals decreased interferon response gene expression, that is reversed by PI3K/mTOR inhibition, suggesting that RNF43659mut may alter tumor immunity. Our findings suggest a therapeutic application for PI3K/mTOR inhibitors in treating RNF43_p.G659fs mutant cancers.
Aneuploidy is a hallmark of human cancer, yet the cellular mechanisms that allow cells to cope with aneuploidy-induced cellular stresses remain largely unknown. Such coping mechanisms may present cellular vulnerabilities that can be harnessed for targeting cancer cells. Here, we induced aneuploidy in non-transformed RPE1-hTERT cells and derived multiple stable clones with various degrees of chromosome imbalances. We performed an unbiased genomic profiling of 6 isogenic clones, using whole-exome and RNA sequencing. We then functionally interrogated their cellular dependency landscapes, using genome-wide CRISPR/Cas9 screens and large-scale drug screens. We found that aneuploid clones activated the DNA damage response (DDR), and were consequently more resistant to further DNA damage induction. Interestingly, aneuploid cells also exhibited elevated RAF/MEK/ERK pathway activity, and were more sensitive to several clinically-relevant drugs targeting this pathway, and in particular to genetic and chemical CRAF inhibition. CRAF activity was functionally linked to the resistance to DNA damage induction, as CRAF inhibition sensitized aneuploid cells to DNA damage-inducing chemotherapies. The association between aneuploidy, RAF/MEK/ERK signaling, and DDR was independent of p53. The increased activity and dependency of aneuploid cells on the RAF/MEK/ERK pathway was validated in another isogenic aneuploid system, and across hundreds of human cancer cell lines, confirming their relevance to human cancer. Overall, our study provides a comprehensive resource for genetically-matched karyotypically-stable cells of various aneuploidy states, and reveals a novel therapeutically-relevant cellular dependency of aneuploid cells.
Sickle cell disease (SCD) is an inherited disorder of hemoglobin (Hb); approximately 300,000 babies are born worldwide with SCD each year. In SCD, fibers of polymerized sickle Hb (HbS) form in red blood cells (RBCs), which cause RBCs to develop their characteristic “sickled” shape, resulting in hemolytic anemia and numerous vascular complications including vaso-occlusive crises. The development of novel antisickling compounds will provide new therapeutic options for patients with SCD. We developed a high-throughput “sickling assay” that is based on an automated high-content imaging system to quantify the effects of hypoxia on the shape and size of RBCs from HbSS SCD patients (SS RBCs). We used this assay to screen thousands of compounds for their ability to inhibit sickling. In the assay, voxelotor (an FDA-approved medication used to treat SCD) prevented sickling with a z ′-factor > 0.4, suggesting that the assay is capable of identifying compounds that inhibit sickling. We screened the Broad Repurposing Library of 5393 compounds for their ability to prevent sickling in 4% oxygen/96% nitrogen. We identified two compounds, SNS-314 mesylate and voxelotor itself, that successfully prevented sickling. SNS-314 mesylate prevented sickling in the absence of oxygen, while voxelotor did not, suggesting that SNS-314 mesylate acts by a mechanism that is different from that of voxelotor. The sickling assay described in this study will permit the identification of additional, novel antisickling compounds, which will potentially expand the therapeutic options for SCD.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.