In this pilot study, low-cost air pollution sensor nodes were fitted in waste removal trucks, hospital vans and taxis to record drivers’ exposure to air pollution in Central London. Particulate matter (PM 2.5 and PM 10 ), CO 2 , NO 2 , temperature and humidity were recorded in real-time with nodes containing low-cost sensors, an electrochemical gas sensor for NO 2 , an optical particle counter for PM 2.5 and PM 10 and a non-dispersive infrared (NDIR) sensor for CO 2 , temperature and relative humidity. An intervention using a pollution filter to trap PM and NO 2 was also evaluated. The measurements were compared with urban background and roadside monitoring stations at Honor Oak Park and Marylebone Road, respectively. The vehicle records show PM and NO 2 concentrations similar to Marylebone Road and a higher NO 2 -to-PM ratio than at Honor Oak Park. Drivers are exposed to elevated pollution levels relative to Honor Oak Park: 1.72 μ g m − 3 , 1.92 μ g m − 3 and 58.38 ppb for PM 2.5 , PM 10 , and NO 2 , respectively. The CO 2 levels ranged from 410 to over 4000 ppm. There is a significant difference in average concentrations of PM 2.5 and PM 10 between the vehicle types and a non-significant difference in the average concentrations measured with and without the pollution filter within the sectors. In conclusion, drivers face elevated air pollution exposure as part of their jobs.
Formaldehyde (HCHO) and nitrogen dioxide (NO2) often co-exist in urban environments at levels that are hazardous to health. There is a demand for a solution to the problem of their combined removal. In this paper, we investigate catalysts, adsorbents and composites for their removal efficiency (RE) toward HCHO and NO2, in the context of creating a pollution control device (PCD). Proton-transfer-reaction mass spectrometry and cavity ring-down spectrometry are used to measure HCHO, and chemiluminescence and absorbance-based monitors for NO2. Commercially available and lab-synthesized materials are tested under relevant conditions. None of the commercial adsorbents are effective for HCHO removal, whereas two metal oxide-based catalysts are highly effective, with REs of 81 ± 4% and 82 ± 1%, an improvement on previous materials tested under similar conditions. The best performing material for combined removal is a novel composite consisting of a noble metal catalyst supported on a metal oxide, combined with a treated active carbon adsorbent. The composite is theorized to work synergistically to physisorb and oxidize HCHO and chemisorb NO2. It has an HCHO RE of 72 ± 2% and an NO2 RE of 96 ± 2%. This material has potential as the active component in PCDs used to reduce personal pollution exposure.
No abstract
No abstract
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.