Abstract-The typical SLAM mapping system assumes a static environment and constructs a map that is then used without regard for ongoing changes. Most SLAM systems, such as FastSLAM, also require a single connected run to create a map. In this paper we present a system of visual mapping, using only input from a stereo camera, that continually updates an optimized metric map in large indoor spaces with movable objects: people, furniture, partitions, etc. The system can be stopped and restarted at arbitrary disconnected points, is robust to occlusion and localization failures, and efficiently maintains alternative views of a dynamic environment. It operates completely online at a 30 Hz frame rate.
Robotic systems that can create and use visual maps in real-
Robotic systems that can create and use visual maps in realtime have obvious advantages in many applications, from automatic driving to mobile manipulation in the home. In this paper we describe a mapping system based on retaining stereo views of the environment that are collected as the robot moves. Connections among the views are formed by consistent geometric matching of their features. Out-of-sequence matching is the key problem: how to find connections from the current view to other corresponding views in the map. Our approach uses a vocabulary tree to propose candidate views, and a strong geometric filter to eliminate false positives -essentially, the robot continually re-recognizes where it is. We present experiments showing the utility of the approach on video data, including map building in large indoor and outdoor environments, map building without localization, and re-localization when lost.
Prominent feature point descriptors such as SIFT and SURF allow reliable real-time matching but at a computational cost that limits the number of points that can be handled on PCs, and even more on less powerful mobile devices. A recently proposed technique that relies on statistical classification to compute signatures has the potential to be much faster but at the cost of using very large amounts of memory, which makes it impractical for implementation on low-memory devices. In this paper, we show that we can exploit the sparseness of these signatures to compact them, speed up the computation, and drastically reduce memory usage. We base our approach on Compressive Sensing theory. We also highlight its effectiveness by incorporating it into two very different SLAM packages and demonstrating substantial performance increases.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.