Antipredator responses may appear unsuccessful when animals are exposed to approaching vehicles, often resulting in mortality. Recent studies have addressed whether certain biological traits are associated with variation in collision risk with cars, but not with higher speed-vehicles like aircraft. Our goal was to establish the association between different species traits (i.e., body mass, eye size, brain size, wing loading, wing aspect ratio) and the frequency of bird collisions with aircraft (hereafter, bird strikes) using a comparative approach controlling for the effects of shared ancestry. We proposed directional predictions as to how each of the species traits would affect the frequency of bird strikes. Considering 39 bird species with all traits represented, the model containing wing loading had the best fit to account for the variance in bird strikes across species. In another model with 54 species exploring the fit to different polynomial models but considering only wing loading, we found that wing loading was negatively and linearly associated with the frequency of bird strikes. Counterintuitively, species with lower wing loading (hence, greater maneuverability) had a higher frequency of bird strikes. We discuss potential non-mutually exclusive explanations (e.g., high wing loading species fly faster, thus gaining some extra time to avoid the aircraft flight path; high wing loading species are hazed more intensively at airports, which could lower collisions, etc.). Ultimately, our findings uncovered that species with low wing loading get struck at a higher rate at airports, which reduces the safety risk for humans because these species tend not to cause damaging strikes, but the ecological consequences of their potentially higher local mortality are unknown.
No abstract
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.