The present study was undertaken to evaluate several computer-based classifiers as potential tools for pharmaceutical fingerprinting by utilizing normalized data obtained from HPLC trace organic impurity patterns. To assess the utility of this approach, samples of L-tryptophan (LT) drug substance were analyzed from commercial production lots of six different manufacturers. The performance of several artificial neural network (ANN) architectures was compared with that of two standard chemometric methods, K-nearest neighbors (KNN) and soft independent modeling of class analogy (SIMCA), as well as with a panel of human experts. The architecture of all three computer-based classifiers was varied with respect to the number of input variables. The ANNs were also optimized with respect to the number of nodes per hidden layer and to the number of hidden layers. A novel preprocessing scheme known as the Window method was devised for converting the output of 899 data entries extracted from each chromatogram into an appropriate input file for the classifiers. Analysis of the test set data revealed that an ANN with 46 inputs (i.e., ANN-46) was superior to all other classifiers evaluated, with 93% of the chromatograms correctly classified. Among the classifiers studied in detail, the order of performance was ANN-46 (93%) > SIMCA-46 (87%) > KNN-46 (85%) = ANN-899 (85%) > "human experts" (83%) > SIMCA-899 (78%) > or = ANN-22 (77%) = KNN-22 (77%) > or = KNN-899 (76%) > SIMCA-22 (73%). These results confirm that ANNs, particularly when used in conjunction with the Window preprocessing scheme, can provide a fast, accurate, and consistent methodology applicable to pharmaceutical fingerprinting. Particular attention was paid to variations in the HPLC patterns of same-manufacturer samples due to differences in LT production lots, HPLC columns, and even run-days to quantify how these factors might hinder correct classifications. The results from these classification studies indicate that the chromatograms evidenced variations across LT manufacturers, across the three HPLC columns and, for one manufacturer, across lots. The extent of column-to-column variations is particularly noteworthy in that all three columns had identical specifications with respect to their stationary-phase characteristics and two of the three columns were from the same vendor.
The immediate objective of this research program is to evaluate several computer-based classifiers as potential tools for pharmaceutical fingerprinting based on analysis of HPLC trace organic impurity patterns. In the present study, wavelet packets (WPs) are investigated for use as a preprocessor of the chromatographic data taken from commercial samples of L-tryptophan (LT) to extract input data appropriate for classifying the samples according to manufacturer using artificial neural networks (ANNs) and the standard classifiers KNN and SIMCA. Using the Haar function, WP decompositions for levels L = 0-10 were generated for the trace impurity patterns of 253 chromatograms corresponding to LT samples that had been produced by six commercial manufacturers. Input sets of N = 20, 30, 40, and 50 inputs were constructed, each one consisting of the first N/2 WP coefficents and corresponding positions from the overall best level (L = 2). The number of hidden nodes in the ANNs was also varied to optimize performance. Optimal ANN performance based on percent correct classifications of test set data was achieved by ANN-30-30-6 (97%) and ANN-20-10-6 (94%), where the integers refer to the numbers of input, hidden, and output nodes, respectively. This performance equals or exceeds that obtained previously (Welsh, W.J.; et al.Anal.Chem. 1996, 68, 3473) using 46 inputs from a so-called Window preprocessor (93%). KNN performance with 20 inputs (97%) or 30 inputs (90%) from the WP preprocessor also exceeded that obtained from the Window preprocessor (85%), while SIMCA performance with 20 inputs (86%) or 30 inputs (82%) from the WP preprocessor was slightly inferior to that obtained from the Window preprocessor (87%). These results indicate that, at least for the ANN and KNN classifiers considered here, the WP preprocessor can yield superior performance and with fewer inputs compared to the Window preprocessor.
The present study investigates an application of artificial neural networks (ANNs) for use in pharmaceutical fingerprinting. Several pruning algorithms were applied to decrease the dimension of the input parameter data set. A localized fingerprint region was identified within the original input parameter space from which a subset of input parameters was extracted leading to enhanced ANN performance. The present results confirm that ANNs can provide a fast, accurate, and consistent methodology applicable to pharmaceutical fingerprinting.
Doxycycline, potassium iodide, and ciprofloxacin, which are stockpiled in solid tablet form, can conveniently be prepared into more palatable formulations, using common household foods and drinks. The electronic tongue can be used to perform an initial screening for palatability.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.