Structural health monitoring (SHM) is a term increasingly used in the last decade to describe a range of systems implemented on full-scale civil infrastructures and whose purposes are to assist and inform operators about continued 'fitness for purpose' of structures under gradual or sudden changes to their state, to learn about either or both of the load and response mechanisms. Arguably, various forms of SHM have been employed in civil infrastructure for at least half a century, but it is only in the last decade or two that computer-based systems are being designed for the purpose of assisting owners/operators of ageing infrastructure with timely information for their continued safe and economic operation. This paper describes the motivations for and recent history of SHM applications to various forms of civil infrastructure and provides case studies on specific types of structure. It ends with a discussion of the present state-of-the-art and future developments in terms of instrumentation, data acquisition, communication systems and data mining and presentation procedures for diagnosis of infrastructural 'health'.
A sound understanding of a structure's normal condition, including its response to normal environmental and operational variations is desirable for structural health monitoring and necessary for performance monitoring of civil structures. The current paper outlines the extensive monitoring campaign of the Tamar suspension bridge as well as analysis carried out in the attempt to understand the bridge's normal condition. Specifically the effects of temperature, traffic loading and wind speed on the structure's dynamic response are investigated. Finally, initial steps towards development of a structural health monitoring system for the Tamar Bridge are addressed.
Structural health monitoring (SHM) is a relatively new paradigm for civil infrastructure stakeholders including operators, consultants and contractors which has in the last two decades witnessed an acceleration of academic and applied research in related areas such as sensing technology, system identification, data mining and condition assessment.SHM has a wide range of applications including, but not limited to, diagnostic and prognostic capabilities.However when it comes to practical applications, stakeholders usually need answers to basic and pragmatic questions about in-service performance, maintenance and management of a structure which the technological advances are slow to address.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.