Bioluminescence is a powerful biological signal that scientists have repurposed as a reporter for gene expression in plants and animals. However, there are downsides associated with the need to provide a substrate to these reporters, including its high cost and non-uniform tissue penetration. In this work we reconstitute a fungal bioluminescence pathway (FBP) in planta using a composable toolbox of parts. We demonstrate that the FBP can create luminescence across various tissues in a broad range of plants without external substrate addition. We also show how our toolbox can be used to deploy the FBP in planta to build auto-luminescent reporters for the study of gene-expression and hormone fluxes. A low-cost imaging platform for gene expression profiling is also described. These experiments lay the groundwork for future construction of programmable auto-luminescent plant traits, such as light driven plant-pollinator interactions or light emitting plant-based sensors.
Bioluminescence is a powerful biological signal that scientists have repurposed to design reporters for gene expression in plants and animals. However, there are some downsides associated with the need to provide a substrate to these reporters, such as its high cost and non-uniform tissue penetration. In this work we reconstitute a fungal bioluminescence pathway (FBP) in planta using an easily composable toolbox of parts. We demonstrate that the FBP can create luminescence across various tissues in a broad range of plants without external substrate addition. We also show how our toolbox can be used to deploy the FBP in planta to build auto-luminescent reporters for the study of gene-expression and hormone fluxes. A low-cost imaging platform for gene expression profiling is also described. These experiments lay the groundwork for the future construction of programmable auto-luminescent plant traits, such as creating light driven plant-pollinator interactions or light emitting plant-based sensors.
Plant biotechnology is rife with new advances in transformation and genome engineering techniques. A common requirement for delivery and coordinated expression in plant cells, however, places the design and assembly of transformation constructs at a crucial juncture as desired reagent suites grow more complex. Modular cloning principles have simplified some aspects of vector design, yet many important components remain unavailable or poorly adapted for rapid implementation in biotechnology research. Here, we describe a universal Golden Gate cloning toolkit for vector construction. The toolkit chassis is compatible with the widely accepted Phytobrick standard for genetic parts, and supports assembly of arbitrarily complex T-DNAs through improved capacity, positional flexibility, and extensibility in comparison to extant kits. We also provision a substantial library of newly adapted Phytobricks, including regulatory elements for monocot and dicot gene expression, and coding sequences for genes of interest such as reporters, developmental regulators, and site-specific recombinases. Finally, we use a series of dual-luciferase assays to measure contributions to expression from promoters, terminators, and from crosscassette interactions attributable to enhancer elements in certain promoters. Taken together, these publicly available cloning resources can greatly accelerate the testing and deployment of new tools for plant engineering.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.