Background Hospital readmission within 30-days of an index hospitalization is receiving increased scrutiny as a marker of poor quality patient care. This study identifies factors associated with 30-day readmission following General Surgery procedures. Study Design Using standard National Surgical Quality Improvement Project (NSQIP) protocol, preoperative, intraoperative, and postoperative outcomes were collected on patients undergoing inpatient General Surgery procedures at a single academic center between 2009 and 2011. Data were merged with our institutional clinical data warehouse to identify unplanned 30-day readmissions. Demographics, comorbidities, type of procedure, postoperative complications, and ICD-9 coding data were reviewed for patients who were readmitted. Univariate and multivariate analysis was utilized to identify risk factors associated with 30-day readmission. Results 1442 General Surgery patients were reviewed. 163 (11.3%) were readmitted within 30 days of discharge. The most common reasons for readmission were gastrointestinal complaint/complication (27.6%), surgical infection (22.1%), and failure to thrive/malnutrition (10.4%). Comorbidities associated with risk of readmission included disseminated cancer, dyspnea, and preoperative open wound (p<0.05 for all variables). Surgical procedures associated with higher rates of readmission included pancreatectomy, colectomy, and liver resection. Postoperative occurrences leading to increased risk of readmission were blood transfusion, postoperative pulmonary complication, wound complication, sepsis/shock, urinary tract infection, and vascular complications. Multivariable analysis demonstrates that the most significant independent risk factor for readmission is the occurrence of any postoperative complication (OR 4.20, 95% CI 2.89–6.13). Conclusions Risk factors for readmission after General Surgery procedures are multi-factorial; however, postoperative complications appear to drive readmissions in surgical patients. Taking appropriate steps to minimize postoperative complications will decrease postoperative readmissions.
Nanoscale modal confinement is known to radically enhance the effect of intrinsic Kerr and Raman nonlinearities within nanophotonic silicon waveguides. By contrast, stimulated Brillouin-scattering nonlinearities, which involve coherent coupling between guided photon and phonon modes, are stifled in conventional nanophotonics, preventing the realization of a host of Brillouin-based signal-processing technologies in silicon. Here we demonstrate stimulated Brillouin scattering in silicon waveguides, for the first time, through a new class of hybrid photonic–phononic waveguides. Tailorable travelling-wave forward-stimulated Brillouin scattering is realized—with over 1,000 times larger nonlinearity than reported in previous systems—yielding strong Brillouin coupling to phonons from 1 to 18 GHz. Experiments show that radiation pressures, produced by subwavelength modal confinement, yield enhancement of Brillouin nonlinearity beyond those of material nonlinearity alone. In addition, such enhanced and wideband coherent phonon emission paves the way towards the hybridization of silicon photonics, microelectromechanical systems and CMOS signal-processing technologies on chip.
West Nile (WNV), dengue (DENV) and yellow fever (YFV) viruses are (re)emerging, mosquito-borne flaviviruses that cause human disease and mortality worldwide. Alterations in mosquito gene expression common and unique to individual flaviviral infections are poorly understood. Here, we present a microarray analysis of the Aedes aegypti transcriptome over time during infection with DENV, WNV or YFV. We identified 203 mosquito genes that were ≥5-fold differentially up-regulated (DUR) and 202 genes that were ≥10-fold differentially down-regulated (DDR) during infection with one of the three flaviviruses. Comparative analysis revealed that the expression profile of 20 DUR genes and 15 DDR genes was quite similar between the three flaviviruses on D1 of infection, indicating a potentially conserved transcriptomic signature of flaviviral infection. Bioinformatics analysis revealed changes in expression of genes from diverse cellular processes, including ion binding, transport, metabolic processes and peptidase activity. We also demonstrate that virally-regulated gene expression is tissue-specific. The overexpression of several virally down-regulated genes decreased WNV infection in mosquito cells and Aedes aegypti mosquitoes. Among these, a pupal cuticle protein was shown to bind WNV envelope protein, leading to inhibition of infection in vitro and the prevention of lethal WNV encephalitis in mice. This work provides an extensive list of targets for controlling flaviviral infection in mosquitoes that may also be used to develop broad preventative and therapeutic measures for multiple flaviviruses.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.