Aim: The “2022 AHA/ACC/HFSA Guideline for the Management of Heart Failure” replaces the “2013 ACCF/AHA Guideline for the Management of Heart Failure” and the “2017 ACC/AHA/HFSA Focused Update of the 2013 ACCF/AHA Guideline for the Management of Heart Failure.” The 2022 guideline is intended to provide patient-centric recommendations for clinicians to prevent, diagnose, and manage patients with heart failure. Methods: A comprehensive literature search was conducted from May 2020 to December 2020, encompassing studies, reviews, and other evidence conducted on human subjects that were published in English from MEDLINE (PubMed), EMBASE, the Cochrane Collaboration, the Agency for Healthcare Research and Quality, and other relevant databases. Additional relevant clinical trials and research studies, published through September 2021, were also considered. This guideline was harmonized with other American Heart Association/American College of Cardiology guidelines published through December 2021. Structure: Heart failure remains a leading cause of morbidity and mortality globally. The 2022 heart failure guideline provides recommendations based on contemporary evidence for the treatment of these patients. The recommendations present an evidence-based approach to managing patients with heart failure, with the intent to improve quality of care and align with patients’ interests. Many recommendations from the earlier heart failure guidelines have been updated with new evidence, and new recommendations have been created when supported by published data. Value statements are provided for certain treatments with high-quality published economic analyses.
Aim: The “2022 AHA/ACC/HFSA Guideline for the Management of Heart Failure” replaces the “2013 ACCF/AHA Guideline for the Management of Heart Failure” and the “2017 ACC/AHA/HFSA Focused Update of the 2013 ACCF/AHA Guideline for the Management of Heart Failure.” The 2022 guideline is intended to provide patient-centric recommendations for clinicians to prevent, diagnose, and manage patients with heart failure. Methods: A comprehensive literature search was conducted from May 2020 to December 2020, encompassing studies, reviews, and other evidence conducted on human subjects that were published in English from MEDLINE (PubMed), EMBASE, the Cochrane Collaboration, the Agency for Healthcare Research and Quality, and other relevant databases. Additional relevant clinical trials and research studies, published through September 2021, were also considered. This guideline was harmonized with other American Heart Association/American College of Cardiology guidelines published through December 2021. Structure: Heart failure remains a leading cause of morbidity and mortality globally. The 2022 heart failure guideline provides recommendations based on contemporary evidence for the treatment of these patients. The recommendations present an evidence-based approach to managing patients with heart failure, with the intent to improve quality of care and align with patients’ interests. Many recommendations from the earlier heart failure guidelines have been updated with new evidence, and new recommendations have been created when supported by published data. Value statements are provided for certain treatments with high-quality published economic analyses.
Fulminant myocarditis (FM) is an uncommon syndrome characterized by sudden and severe diffuse cardiac inflammation often leading to death resulting from cardiogenic shock, ventricular arrhythmias, or multiorgan system failure. Historically, FM was almost exclusively diagnosed at autopsy. By definition, all patients with FM will need some form of inotropic or mechanical circulatory support to maintain end-organ perfusion until transplantation or recovery. Specific subtypes of FM may respond to immunomodulatory therapy in addition to guideline-directed medical care. Despite the increasing availability of circulatory support, orthotopic heart transplantation, and disease-specific treatments, patients with FM experience significant morbidity and mortality as a result of a delay in diagnosis and initiation of circulatory support and lack of appropriately trained specialists to manage the condition. This scientific statement outlines the resources necessary to manage the spectrum of FM, including extracorporeal life support, percutaneous and durable ventricular assist devices, transplantation capabilities, and specialists in advanced heart failure, cardiothoracic surgery, cardiac pathology, immunology, and infectious disease. Education of frontline providers who are most likely to encounter FM first is essential to increase timely access to appropriately resourced facilities, to prevent multiorgan system failure, and to tailor disease-specific therapy as early as possible in the disease process.
Abstract-Arterial elasticity is determined by structural characteristics of the artery wall and by vascular smooth muscle tone. The identity of endogenous vasoactive substances that regulate elasticity has not been defined in humans. We hypothesized that NO, a vasodilator released constitutively by the endothelium, augments arterial elasticity. Seven healthy young men were studied. A 20-MHz intravascular ultrasound catheter was introduced through an arterial sheath to measure brachial artery cross-sectional area, wall thickness, and intra-arterial pressure. After control was established, indices of elasticity (pressure-area relationship, instantaneous compliance, and stress-strain, pressure-incremental elastic modulus (E inc ), and pressure-pulse wave velocity relationships) were examined over 0 to 100 mm Hg transmural pressure obtained by inflation of an external cuff. Thereafter, the basal production of endothelium-derived NO was inhibited by N G -monomethyl-L-arginine (L-NMMA) (4 and 8 mg/min). Finally, nitroglycerin (2.5 and 12.5 g/min), an exogenous donor of NO, was given to relax the vascular smooth muscle. Elasticity was measured under all of these conditions. L-NMMA (8 mg/min) decreased brachial artery area (Pϭ0.016) and compliance (PϽ0.0001) and increased E inc (PϽ0.01) and pulse wave velocity (PϽ0.0001). Nitroglycerin (12.5 g/min) increased brachial artery area (PϽ0.001) and compliance (PϽ0.001) and decreased pulse wave velocity (Pϭ0.02). NO, an endothelium-derived vasodilator, augments arterial elasticity in the human brachial artery. Loss of constitutively released NO associated with cardiovascular risk factors may adversely affect arterial elasticity in humans. Key Words: brachial artery Ⅲ elasticity Ⅲ human Ⅲ endothelium-derived relaxing factor E lasticity of large arteries absorbs the energy of the phasic stroke volume in systole and thereby dampens the arterial pressure wave during its propagation through the arterial tree. 1 The release of stored energy in diastole facilitates the continuous flow of blood to tissues. 2 Several indices of arterial elasticity have been used in clinical studies, including compliance, distensibility index, stress-strain relationships, Young's modulus, and pulse wave velocity. Arterial compliance refers to the relationship between arterial dimension and the distending pressure. An increase in compliance corresponds to a decrease in artery stiffness. Arterial compliance changes in a nonlinear fashion with blood pressure. It tends to be greater at lower blood pressures, and for this reason the distensibility index (change in volume/change in pressureϫbaseline volume) can lead to erroneous conclusions if the mean distending pressure is shifted by an intervention. Compliance curves and the incremental modulus (E inc ) can be used to assess elasticity independent of the blood pressure changes. Recently, a technique to assess arterial elasticity in humans with the use of intravascular ultrasound to measure arterial dimension and inflation of an external blood pressure cuff...
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.