SUMMARY Gene and genome duplications are the primary source of new genes and novel functions and have played a pivotal role in the evolution of genomic and organismal complexity [1, 2]. The spontaneous rate of gene duplication is a critical parameter for understanding the evolutionary dynamics of gene duplicates; yet few direct empirical estimates exist and differ widely. The presence of a large population of recently derived gene duplicates in sequenced genomes suggests a high rate of spontaneous origin, also evidenced by population-genomic studies reporting rampant copy-number polymorphism at the intraspecific level [3–6]. An analysis of long-term mutation-accumulation lines of Caenorhabditis elegans for gene copy-number changes using array Comparative Genomic Hybridization yields the first direct estimate of the genome-wide rate of gene duplication in a multicellular eukaryote. The gene duplication rate in C. elegans is quite high, on the order of 10−7 duplications/gene/generation. This rate is two orders of magnitude greater than the spontaneous rate of point mutation per nucleotide site in this species and also greatly exceeds an earlier estimate derived from the frequency distribution of extant gene duplicates in the sequenced C. elegans genome.
BackgroundGene copy-number variation (CNVs), which provides the raw material for the evolution of novel genes, is widespread in natural populations. We investigated whether CNVs constitute a common mechanism of genetic change during adaptation in experimental Caenorhabditis elegans populations. Outcrossing C. elegans populations with low fitness were evolved for >200 generations. The frequencies of CNVs in these populations were analyzed by oligonucleotide array comparative genome hybridization, quantitative PCR, PCR, DNA sequencing across breakpoints, and single-worm PCR.ResultsMultiple duplications and deletions rose to intermediate or high frequencies in independent populations. Several lines of evidence suggest that these changes were adaptive: (i) copy-number changes reached high frequency or were fixed in a short time, (ii) many independent populations harbored CNVs spanning the same genes, and (iii) larger average size of CNVs in adapting populations relative to spontaneous CNVs. The latter is expected if larger CNVs are more likely to encompass genes under selection for a change in gene dosage. Several convergent CNVs originated in populations descended from different low fitness ancestors as well as high fitness controls.ConclusionsWe show that gene copy-number changes are a common class of adaptive genetic change. Due to the high rates of origin of spontaneous duplications and deletions, copy-number changes containing the same genes arose readily in independent populations. Duplications that reached high frequencies in these adapting populations were significantly larger in span. Many convergent CNVs may be general adaptations to laboratory conditions. These results demonstrate the great potential borne by CNVs for evolutionary adaptation.Electronic supplementary materialThe online version of this article (doi:10.1186/s12864-015-2253-2) contains supplementary material, which is available to authorized users.
Background: The direct examination of large, unbiased samples of young gene duplicates in their early stages of evolution is crucial to understanding the origin, divergence and preservation of new genes. Furthermore, comparative analysis of multiple genomes is necessary to determine whether patterns of gene duplication can be generalized across diverse lineages or are species-specific. Here we present results from an analysis comprising 68 duplication events in the Saccharomyces cerevisiae genome. We partition the yeast duplicates into ohnologs (generated by a whole-genome duplication) and non-ohnologs (from small-scale duplication events) to determine whether their disparate origins commit them to divergent evolutionary trajectories and genomic attributes.
We studied fluctuating asymmetry (FA) in two generations of the bulb mite Rhizoglyphus robini . We used Procrustes analyses, which allow the comparison of dimensionless shapes of body sides. We found little ( < 4%) directional asymmetry in either sex. Of the two morphs occurring in this species, fighters, which possess a thickened third pair of legs, exhibited higher FA than did scramblers, the morph with unmodified legs; this may reflect the costliness of the fighter developmental pathway. There was a negative relationship between FA and female fecundity, but the regression slope of mid-offspring on mid-parent FA was not significantly greater than zero. We propose that heritability estimates can be biased downwards if highly asymmetric individuals produce fewer viable offspring. However, we found no significant association between parental FA and the proportion of viable embryos in their broods. Furthermore, we hypothesized that parental FA might indicate the presence of largely recessive mutations deleterious to developmental homeostasis that would cause increased embryo mortality under inbreeding. However, we found no significant association between FA of parents that were mated to their full sibs and the proportion of viable embryos in their inbred progeny.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.