Introduction Combat medics are required to perform highly technical medical procedures in austere environments with minimal error. Effective means to quantify medic performance in field and simulated environments are critical to optimize medic training procedures as well as to evaluate the influence of medical equipment and other supportive technologies on medic performance. Human performance evaluation in combat casualty care presents many unique challenges due to the unique environment (battlefields) and population (medics) that must be represented. Recent advances in simulation and measurement technology have presented opportunities to improve simulation fidelity and measurement quality; however, it is currently unclear to what extent these advances have been adopted in this domain. Methodology In this work, a scoping review of recent (2011–2021) prospective research on Army medic (68 W and Special Operations) performance is presented. The Preferred Reporting Items for Systematic Reviews and Meta-Analyses extension for Scoping Reviews guidelines served as the framework for the review. The goal of this work was to summarize recent trends and practices and to illuminate opportunities for future work. Two human factors experts performed an exhaustive review of relevant, peer-reviewed literature and systematically identified articles for inclusion in the final analysis. The articles were examined in detail, and data elements of interest were extracted. Results Forty-eight articles were identified based on the defined inclusion criteria. Thirty three of the articles focused on technological evaluation, 25 focused on medic training procedures, and 5 focused on evaluating medical techniques. Study contributions were predominantly related to medic training materials/procedures and simulator technology. Supportive medical technologies, including telemedical systems, hemorrhage control devices, and ultrasound devices, also received significant attention. Timing was the most common metric used to quantify medic performance, followed by skill pass/fail ratings. There was a notable lack of neurophysiological data used to examine medic physical/cognitive workload during procedures, a growing practice in many other related domains. The most commonly simulated procedures were hemorrhage control, airway management, and thoracostomy. Notable limitations cited across articles were insufficient simulation fidelity, inadequate sample size or sample representativeness, and poor study design. Conclusions This work provided a summary of recent peer-reviewed research related to medic simulation and training, and performance evaluation. This article should be used to contextualize existing research and inspire new research questions. Expanding and advancing research on medic simulation and training will help to ensure optimal casualty care at the front lines.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.