Understanding dynamic liquid-water uptake and removal in gas-diffusion layers (GDLs) is essential to improve the performance of polymer-electrolyte fuel cells and related electrochemical technologies. In this work, GDL properties such as breakthrough pressure, droplet adhesion force, and detachment velocity are measured experimentally for commonly used GDLs under a host of test conditions. Specifically, the effects of GDL hydrophobic (PTFE) content, thickness, and water-injection area and rate were studied to identify trends that may be beneficial to the design of liquid-water management strategies and next-generation GDL materials. The results conclude that liquid water moving transversely through or forming at the surface of GDL may be affected by internal capillary structure. Adhesion-force measurements using a bottom-injection method were found to be sensitive to PTFE loading, GDL thickness, and injection area/rate, the latter of which is critical for defining the control-volume limits for modeling and analysis. It was observed that higher PTFE loadings, increased thickness, and smaller injection areas led to elevated breakthrough pressure; meaning there was a greater resistance to forming droplets. The data are used to predict the onset of droplet instability via a simple force-balance model with general trend agreement. Polymer-electrolyte fuel-cell (PEFC) and redox flow-battery (RFB) systems have the potential to improve energy efficiency and storage capabilities for mobile and grid-level applications in the near future. In PEFCs, the electrode structure is composed of a catalytic layer supported by porous gas-diffusion layers (GDLs) where multiphase reactant/product transport and electron conduction occur. Product liquid water can contribute to performance and degradation issues if not properly handled. Numerous studies have shown the importance of water-management strategies during start-up/shutdown and cooler operation where lower cell temperatures may lead to liquid buildup. [1][2][3][4][5][6][7][8][9][10][11][12][13][14][15] In RFBs, GDLs serve a similar purpose of effective reactant distribution, especially for gaseous cells, 16,17 as well as serving as possible catalysts.18 Understanding multiphase, dynamic GDL water uptake and removal is essential to develop effective liquid-water management schemes as well as next-generation GDL materials for improved PEFC and RFB performance, stability, and component lifetimes.The influence of the porous-electrode structure on liquid/gas transport and PEFC performance has been studied by several groups focusing on the role of GDL and microporous layer (MPL) effects. [19][20][21][22] Capillary and viscous forces govern two-phase flow through GDLs; the dimensionless parameters that quantify them are the capillary number and viscosity ratio defined asandrespectively, where u is the superficial velocity of the non-wetting phase, γ is the surface tension, and μ is the wetting (wet) and nonwetting (nw) phase viscosities. 10,23 Under normal PEFC operation, capillary fo...
The growing ethanol industry in the Southern Great Plains has increased the use of wet distillers grains with solubles (WDGS) in beef cattle (Bos taurus) finishing diets. Few studies have used steam-flaked corn (Zea mays L.; SFC)-based diets to evaluate the effects of WDGS in finishing cattle diets, and a reliable estimate of the net energy value of WDGS has yet to be determined. Effects of corn processing method and WDGS on energy metabolism, C and N balance, and enteric methane (CH(4)) production were evaluated in a short-term study using 8 Jersey steers and respiration calorimetry chambers. A 2 by 2 factorial arrangement of treatments was used in a Latin square design. The 4 treatment combinations consisted of: i) SFC-based diet with 0% WDGS (SFC-0); ii) SFC-based diet with 30% WDGS (SFC-30); iii) dry-rolled corn (DRC)-based diet with 0% WDGS (DRC-0); and iv) DRC-based diet with 30% WDGS (DRC-30). Diets were balanced for degradable intake protein (DIP) and ether extract (EE) by the addition of cottonseed (Gossypium hirsutum L.) meal and yellow grease. As a proportion of GE, grain processing method did not affect (P ≥ 0.12) fecal, digestible, urinary, and ME, or heat production. Steers consuming SFC-based diets produced less (P < 0.04) CH(4) than steers consuming DRC-based diets. Retained energy tended to be greater (P = 0.09) for cattle consuming SFC- than DRC-based diets. Inclusion of WDGS did not affect (P ≥ 0.17) fecal, digestible, urinary, metabolizable, and retained energy, or heat production as a proportion of GE. Furthermore, neither inclusion of WDGS or grain processing method affected (P ≥ 0.17) daily CO(2) production. Due in part to greater N intake, cattle consuming diets containing 30% WDGS excreted more (P = 0.01) total N and excreted a greater (P < 0.01) quantity of N in the urine. From these results, we conclude that cattle consuming SFC-based diets produce less CH(4) and retain more energy than cattle fed DRC-based diets; however, dietary inclusion of WDGS at 30% seems to have little effect on CH(4) production and energy metabolism when diets are balanced for DIP and EE. Cattle excrete a greater amount of C when fed DRC compared with SFC-based diets, and dietary inclusion of 30% WDGS increases urinary N excretion. Finally, we determined the NE(g) values for WDGS were 1.66 and 1.65 Mcal/kg in a SFC or DRC-based diet, respectively, when WDGS replaced 30% of our control (SFC-0 and DRC-0) diets.
Two experiments were conducted to determine the effects of wet distillers grain plus solubles (WDG; <15% sorghum grain) concentration in steam-flaked corn (SFC) diets on feedlot performance, carcass characteristics, ruminal fermentation, and diet digestibility. In Exp. 1, six hundred crossbred steers (364 ± 35 kg of BW) were used in a randomized complete block design with 8 replications/treatment. Dietary treatments consisted of a dry-rolled corn (DRC) control diet without WDG, a SFC control without WDG, and SFC with 4 WDG concentrations (15, 30, 45, 60% DM basis) replacing SFC, cottonseed meal, urea, and yellow grease. Final BW, ADG, G:F, HCW, and 12th-rib fat depth were greater (P ≤ 0.05) for SFC compared with DRC. Dry matter intake tended (P = 0.06) to be greater for DRC compared with SFC. Final BW, ADG, G:F, HCW, 12th-rib fat depth, and marbling score decreased linearly (P < 0.01) with increasing WDG concentration. In Exp. 2, six ruminally and duodenally cannulated crossbred steers (481 ± 18 kg of BW) were used in a 6 × 6 Latin square design using the same diets as Exp. 1. Ruminal, postruminal, and total tract OM and NDF digestibility were not different (P > 0.14) for DRC compared with SFC. Ruminal and total tract starch digestibility were greater (P < 0.01) for SFC compared with DRC. Dry matter and OM intake were not different (P ≥ 0.43) among WDG treatments. Ruminal and total tract OM digestibility decreased linearly (P < 0.01) with increasing WDG concentration. Intake, ruminal digestibility, and total tract digestibility of NDF increased linearly (P < 0.01) with increasing WDG concentration. Starch intake decreased linearly (P < 0.01) with increasing WDG concentration. Ruminal starch digestibility increased (P = 0.01) with increasing concentration of WDG. Total tract starch digestibility decreased quadratically (P < 0.01) with increasing concentration of WDG. Feeding SFC improved steer performance compared with DRC. The concentration of WDG and corn processing method influences nutrient digestibility and ruminal fermentation. The addition of WDG in SFC-based diets appears to negatively affect animal performance by diluting the energy density of the diet.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.